64 research outputs found

    Anomalous Features of EMT during Keratinocyte Transformation

    Get PDF
    During the evolution of epithelial cancers, cells often lose their characteristic features and acquire a mesenchymal phenotype, in a process known as epithelial-mesenchymal transition (EMT). In the present study we followed early stages of keratinocyte transformation by HPV16, and observed diverse cellular changes, associated with EMT. We compared primary keratinocytes with early and late passages of HF1 cells, a cell line of HPV16-transformed keratinocytes. We have previously shown that during the progression from the normal cells to early HF1 cells, immortalization is acquired, while in the progression to late HF1, cells become anchorage independent. We show here that during the transition from the normal state to late HF1 cells, there is a progressive reduction in cytokeratin expression, desmosome formation, adherens junctions and focal adhesions, ultimately leading to poorly adhesive phenotype, which is associated with anchorage-independence. Surprisingly, unlike β€œconventional EMT”, these changes are associated with reduced Rac1-dependent cell migration. We monitored reduced Rac1-dependent migration also in the cervical cancer cell line SiHa. Therefore we can conclude that up to the stage of tumor formation migratory activity is eliminated

    Integrin Ξ²1 is required for the invasive behaviour but not proliferation of squamous cell carcinoma cells in vivo

    Get PDF
    Integrin Ξ²1 is both overexpressed and in an β€˜active' conformation in vulval squamous cell carcinomas (VSCCs) compared to matched normal skin. To investigate the significance of integrin Ξ²1 deregulation we stably knocked-down integrin Ξ²1 expression in the VSCC cell line A431. In vitro analysis revealed that integrin Ξ²1 is required for cell adhesion, cell spreading and invasion. However, integrin Ξ²1 is not required for cell growth or activation of FAK and ERK signalling in vitro or in vivo. Strikingly, while control tumours were able to invade the dermis, integrin Ξ²1 knockdown tumours were significantly more encapsulated and less invasive

    Prenatal alcohol exposure triggers ceramide-induced apoptosis in neural crest-derived tissues concurrent with defective cranial development

    Get PDF
    Fetal alcohol syndrome (FAS) is caused by maternal alcohol consumption during pregnancy. The reason why specific embryonic tissues are sensitive toward ethanol is not understood. We found that in neural crest-derived cell (NCC) cultures from the first branchial arch of E10 mouse embryos, incubation with ethanol increases the number of apoptotic cells by fivefold. Apoptotic cells stain intensely for ceramide, suggesting that ceramide-induced apoptosis mediates ethanol damage to NCCs. Apoptosis is reduced by incubation with CDP-choline (citicoline), a precursor for the conversion of ceramide to sphingomyelin. Consistent with NCC cultures, ethanol intubation of pregnant mice results in ceramide elevation and increased apoptosis of NCCs in vivo. Ethanol also increases the protein level of prostate apoptosis response 4 (PAR-4), a sensitizer to ceramide-induced apoptosis. Prenatal ethanol exposure is concurrent with malformation of parietal bones in 20% of embryos at day E18. Meninges, a tissue complex derived from NCCs, is disrupted and generates reduced levels of TGF-Ξ²1, a growth factor critical for bone and brain development. Ethanol-induced apoptosis of NCCs leading to defects in the meninges may explain the simultaneous presence of cranial bone malformation and cognitive retardation in FAS. In addition, our data suggest that treatment with CDP-choline may alleviate the tissue damage caused by alcohol

    A Novel DC Therapy with Manipulation of MKK6 Gene on Nickel Allergy in Mice

    Get PDF
    BACKGROUND: Although the activation of dermal dendritic cells (DCs) or Langerhans cells (LCs) via p38 mitogen-activated protein kinase (MAPK) plays a crucial role in the pathogenesis of metal allergy, the in vivo molecular mechanisms have not been identified and a possible therapeutic strategy using the control of dermal DCs or LCs has not been established. In this study, we focused on dermal DCs to define the in vivo mechanisms of metal allergy pathogenesis in a mouse nickel (Ni) allergy model. The effects of DC therapy on Ni allergic responses were also investigated. METHODS AND FINDING: The activation of dermal DCs via p38 MAPK triggered a T cell-mediated allergic immune response in this model. In the MAPK signaling cascade in DCs, Ni potently phosphorylated MAP kinase kinase 6 (MKK6) following increased DC activation. Ni-stimulated DCs could prime T cell activation to induce Ni allergy. Interestingly, when MKK6 gene-transfected DCs were transferred into the model mice, a more pronounced allergic reaction was observed. In addition, injection of short interfering (si) RNA targeting the MKK6 gene protected against a hypersensitivity reaction after Ni immunization. The cooperative action between T cell activation and MKK6-mediated DC activation by Ni played an important role in the development of Ni allergy. CONCLUSIONS: DC activation by Ni played an important role in the development of Ni allergy. Manipulating the MKK6 gene in DCs may be a good therapeutic strategy for dermal Ni allergy

    Folic Acid Exposure Rescues Spina Bifida Aperta Phenotypes in Human Induced Pluripotent Stem Cell Model

    Get PDF
    Neural tube defects (NTDs) are severe congenital abnormalities, caused by failed closure of neural tube during early embryonic development. Periconceptional folic acid (FA) supplementation greatly reduces the risk of NTDs. However, the molecular mechanisms behind NTDs and the preventive role of FA remain unclear. Here, we use human induced pluripotent stem cells (iPSCs) derived from fetuses with spina bifida aperta (SBA) to study the pathophysiology of NTDs and explore the effects of FA exposure. We report that FA exposure in SBA model is necessary for the proper formation and maturation of neural tube structures and robust differentiation of mesodermal derivatives. Additionally, we show that the folate antagonist methotrexate dramatically affects the formation of neural tube structures and FA partially reverts this aberrant phenotype. In conclusion, we present a novel model for human NTDs and provide evidence that it is a powerful tool to investigate the molecular mechanisms underlying NTDs, test drugs for therapeutic approaches

    Inhibition of nuclear factor kappa-B signaling reduces growth in medulloblastoma in vivo

    Get PDF
    Abstract Background Medulloblastoma is a highly malignant pediatric brain tumor that requires surgery, whole brain and spine irradiation, and intense chemotherapy for treatment. A more sophisticated understanding of the pathophysiology of medulloblastoma is needed to successfully reduce the intensity of treatment and improve outcomes. Nuclear factor kappa-B (NFΞΊB) is a signaling pathway that controls transcriptional activation of genes important for tight regulation of many cellular processes and is aberrantly expressed in many types of cancer. Methods To test the importance of NFΞΊB to medulloblastoma cell growth, the effects of multiple drugs that inhibit NFΞΊB, pyrrolidine dithiocarbamate, diethyldithiocarbamate, sulfasalazine, curcumin and bortezomib, were studied in medulloblastoma cell lines compared to a malignant glioma cell line and normal neurons. Expression of endogenous NFΞΊB was investigated in cultured cells, xenograft flank tumors, and primary human tumor samples. A dominant negative construct for the endogenous inhibitor of NFΞΊB, IΞΊB, was prepared from medulloblastoma cell lines and flank tumors were established to allow specific pathway inhibition. Results We report high constitutive activity of the canonical NFΞΊB pathway, as seen by Western analysis of the NFΞΊB subunit p65, in medulloblastoma tumors compared to normal brain. The p65 subunit of NFΞΊB is extremely highly expressed in xenograft tumors from human medulloblastoma cell lines; though, conversely, the same cells in culture have minimal expression without specific stimulation. We demonstrate that pharmacological inhibition of NFΞΊB in cell lines halts proliferation and leads to apoptosis. We show by immunohistochemical stain that phosphorylated p65 is found in the majority of primary tumor cells examined. Finally, expression of a dominant negative form of the endogenous inhibitor of NFΞΊB, dnIΞΊB, resulted in poor xenograft tumor growth, with average tumor volumes 40% smaller than controls. Conclusions These data collectively demonstrate that NFΞΊB signaling is important for medulloblastoma tumor growth, and that inhibition can reduce tumor size and viability in vivo. We discuss the implications of NFΞΊB signaling on the approach to managing patients with medulloblastoma in order to improve clinical outcomes.</p

    Models Analyses for Allelopathic Effects of Chicory at Equivalent Coupling of Nitrogen Supply and pH Level on F. arundinacea, T. repens and M. sativa

    Get PDF
    Alllelopathic potential of chicory was investigated by evaluating its effect on seed germination, soluble sugar, malondialdehyde (MDA) and the chlorophyll content of three target plants species (Festuca arundinacea, Trifolium repens and Medicago sativa). The secretion of allelochemicals was regulated by keeping the donor plant (chicory) separate from the three target plant species and using different pH and nitrogen levels. Leachates from donor pots with different pH levels and nitrogen concentrations continuously irrigated the target pots containing the seedlings. The allelopathic effects of the chicory at equivalent coupling of nitrogen supply and pH level on the three target plants species were explored via models analyses. The results suggested a positive effect of nitrogen supply and pH level on allelochemical secretion from chicory plants. The nitrogen supply and pH level were located at a rectangular area defined by 149 to 168 mg/l nitrogen supply combining 4.95 to 7.0 pH value and point located at nitrogen supply 177 mg/l, pH 6.33 when they were in equivalent coupling effects; whereas the inhibitory effects of equivalent coupling nitrogen supply and pH level were located at rectangular area defined by 125 to 131 mg/l nitrogen supply combining 6.71 to 6.88 pH value and two points respectively located at nitrogen supply 180 mg/l with pH 6.38 and nitrogen supply 166 mg/l with pH 7.59. Aqueous extracts of chicory fleshy roots and leaves accompanied by treatment at different sand pH values and nitrogen concentrations influenced germination, seedling growth, soluble sugar, MDA and chlorophyll of F. arundinacea, T. repens and M. sativa. Additionally, we determined the phenolics contents of root and leaf aqueous extracts, which were 0.104% and 0.044% on average, respectively

    Carcinoma Matrix Controls Resistance to Cisplatin through Talin Regulation of NF-kB

    Get PDF
    Extracellular matrix factors within the tumor microenvironment that control resistance to chemotherapeutics are poorly understood. This study focused on understanding matrix adhesion pathways that control the oral carcinoma response to cisplatin. Our studies revealed that adhesion of HN12 and JHU012 oral carcinomas to carcinoma matrix supported tumor cell proliferation in response to treatment with cisplatin. Proliferation in response to 30 Β΅M cisplatin was not observed in HN12 cells adherent to other purified extracellular matrices such as Matrigel, collagen I, fibronectin or laminin I. Integrin Ξ²1 was important for adhesion to carcinoma matrix to trigger proliferation after treatment with cisplatin. Disruption of talin expression in HN12 cells adherent to carcinoma matrix increased cisplatin induced proliferation. Pharmacological inhibitors were used to determine signaling events required for talin deficiency to regulate cisplatin induced proliferation. Pharmacological inhibition of NF-kB reduced proliferation of talin-deficient HN12 cells treated with 30 Β΅M cisplatin. Nuclear NF-kB activity was assayed in HN12 cells using a luciferase reporter of NF-kB transcriptional activity. Nuclear NF-kB activity was similar in HN12 cells adherent to carcinoma matrix and collagen I when treated with vehicle DMSO. Following treatment with 30 Β΅M cisplatin, NF-kB activity is maintained in cells adherent to carcinoma matrix whereas NF-kB activity is reduced in collagen I adherent cells. Expression of talin was sufficient to trigger proliferation of HN12 cells adherent to collagen I following treatment with 1 and 30 Β΅M cisplatin. Talin overexpression was sufficient to trigger NF-kB activity following treatment with cisplatin in carcinoma matrix adherent HN12 cells in a process disrupted by FAK siRNA. Thus, adhesions within the carcinoma matrix create a matrix environment in which exposure to cisplatin induces proliferation through the function of integrin Ξ²1, talin and FAK pathways that regulate NF-kB nuclear activity

    The Joint Influence of Intra- and Inter-Team Learning Processes on Team Performance: A Constructive or Destructive Combination?

    Get PDF
    In order for teams to build a shared conception of their task, team learning is crucial. Benefits of intra-team learning have been demonstrated in numerous studies. However, teams do not operate in a vacuum, and interact with their environment to execute their tasks. Our knowledge of the added value of inter-team learning (team learning with external parties) is limited. Do both types of team learning compete over limited resources, or do they form a synergistic combination? We aim to shed light on the interplay between intra- and inter-team learning in relation to team performance, by including adaptive and transformative sub-processes of intra-team learning. A quantitative field study was conducted among 108 university teacher teams. The joint influence of intra- and inter-team learning as well as structural (task interdependence) and cultural (team efficacy) team characteristics on self-perceived and externally rated team performance were explored in a path model. The results showed that adaptive intra-team learning positively influenced self-perceived team performance, while transformative intra-team learning positively influenced externally rated team performance. Moreover, intra-team and inter-team learning were found to be both a constructive and a destructive combination. Adaptive intra-team learning combined with inter-team learning led to increased team performance, while transformative intra-team learning combined with inter-team learning hurt team performance. The findings demonstrate the importance of distinguishing between both the scope (intra- vs. inter-team) and the level (adaptive vs. transformative) of team learning in understanding team performance
    • …
    corecore