6 research outputs found

    Control of glycolytic dynamics by hexose transport in Saccharomyces cerevisiae

    Get PDF
    AbstractIt is becoming accepted that steady-state fluxes are not necessarily controlled by single rate-limiting steps. This leaves open the issue whether cellular dynamics are controlled by single pacemaker enzymes, as has often been proposed. This paper shows that yeast sugar transport has substantial but not complete control of the frequency of glycolytic oscillations. Addition of maltose, a competitive inhibitor of glucose transport, reduced both average glucose consumption flux and frequency of glycolytic oscillations. Assuming a single kinetic component and a symmetrical carrier, a frequency control coefficient of between 0.4 and 0.6 and an average-flux control coefficient of between 0.6 and 0.9 were calculated for hexose transport activity. In a second approach, mannose was used as the carbon and free-energy source, and the dependencies on the extracellular mannose concentration of the transport activity, of the frequency of oscillations, and of the average flux were compared. In this case the frequency control coefficient and the average-flux control coefficient of hexose transport activity amounted to 0.7 and 0.9, respectively. From these results, we conclude that 1) transport is highly important for the dynamics of glycolysis, 2) most but not all control resides in glucose transport, and 3) there should at least be one step other than transport with substantial control

    Geobacteraceae Community Composition Is Related to Hydrochemistry and Biodegradation in an Iron-Reducing Aquifer Polluted by a Neighboring Landfill

    Get PDF
    Relationships between community composition of the iron-reducing Geobacteraceae, pollution levels, and the occurrence of biodegradation were established for an iron-reducing aquifer polluted with landfill leachate by using cultivation-independent Geobacteraceae 16S rRNA gene-targeting techniques. Numerical analysis of denaturing gradient gel electrophoresis (DGGE) profiles and sequencing revealed a high Geobacteraceae diversity and showed that community composition within the leachate plume differed considerably from that of the unpolluted aquifer. This suggests that pollution has selected for specific species out of a large pool of Geobacteraceae. DGGE profiles of polluted groundwater taken near the landfill (6- to 39-m distance) clustered together. DGGE profiles from less-polluted groundwater taken further downstream did not fall in the same cluster. Several individual DGGE bands were indicative of either the redox process or the level of pollution. This included a pollution-indicative band that dominated the DGGE profiles from groundwater samples taken close to the landfill (6 to 39 m distance). The clustering of these profiles and the dominance by a single DGGE band corresponded to the part of the aquifer where organic micropollutants and reactive dissolved organic matter were attenuated at relatively high rates

    Nitrogen Fixation and Hydrogen Metabolism in Relation to the Dissolved Oxygen Tension in Chemostat Cultures of the Wild Type and a Hydrogenase-Negative Mutant of Azorhizobium caulinodans

    No full text
    Both the wild type and an isogenic hydrogenase-negative mutant of Azorhizobium caulinodans growing ex planta on N(2) as the N source were studied in succinate-limited steady-state chemostat cultures under 0.2 to 3.0% dissolved O(2) tension. Production or consumption of O(2), H(2), and CO(2) was measured with an on-line-connected mass spectrometer. In the range of 0.2 to 3.0%, growth of both the wild type and the mutant was equally dependent on the dissolved O(2) tension: the growth yield decreased, and the specific O(2) consumption and CO(2) production increased. A similar dependency on the dissolved O(2) tension was found for the mutant with 2.5% H(2) in the influent gas. The H(2)/N(2) ratio (moles of H(2) evolved per mole of N(2) consumed via nitrogenase) of the mutant, growing with or without 2.5% H(2), increased with increasing dissolved O(2) tensions. This increase in the H(2)/N(2) ratio was small but significant. The dependencies of the ATP/N(2) ratio (moles of ATP consumed per mole of N(2) fixed) and the ATP/2e(-) ratio [moles of ATP consumed per mole of electron pairs transferred from NAD(P)H to nitrogenase] on the dissolved O(2) tension were estimated. These dependencies were interpreted in terms of the physiological concepts of respiratory protection and autoprotection

    Microorganisms with a Taste for Vanilla: Microbial Ecology of Traditional Indonesian Vanilla Curing

    Get PDF
    The microbial ecology of traditional postharvesting processing of vanilla beans (curing) was examined using a polyphasic approach consisting of conventional cultivation, substrate utilization-based and molecular identification of isolates, and cultivation-independent community profiling by 16S ribosomal DNA based PCR-denaturing gradient gel electrophoresis. At two different locations, a batch of curing beans was monitored. In both batches a major shift in microbial communities occurred after short-term scalding of the beans in hot water. Fungi and yeast disappeared, although regrowth of fungi occurred in one batch during a period in which process conditions were temporarily not optimal. Conventional plating showed that microbial communities consisting of thermophilic and thermotolerant bacilli (mainly closely related to Bacillus subtilis, B. licheniformis,, and B. smithii) developed under the high temperatures (up to 65°C) that were maintained for over a week after scalding. Only small changes in the communities of culturable bacteria occurred after this period. Molecular analysis revealed that a proportion of the microbial communities could not be cultured on conventional agar medium, especially during the high-temperature period. Large differences between both batches were observed in the numbers of microorganisms, in species composition, and in the enzymatic abilities of isolated bacteria. These large differences indicate that the effects of microbial activities on the development of vanilla flavor could be different for each batch of cured vanilla beans
    corecore