41 research outputs found

    Cost impact of procalcitonin-guided decision making on duration of antibiotic therapy for suspected early-onset sepsis in neonates

    Get PDF
    Abstract Backgrounds The large, international, randomized controlled NeoPInS trial showed that procalcitonin (PCT)-guided decision making was superior to standard care in reducing the duration of antibiotic therapy and hospitalization in neonates suspected of early-onset sepsis (EOS), without increased adverse events. This study aimed to perform a cost-minimization study of the NeoPInS trial, comparing health care costs of standard care and PCT-guided decision making based on the NeoPInS algorithm, and to analyze subgroups based on country, risk category and gestational age. Methods Data from the NeoPInS trial in neonates born after 34 weeks of gestational age with suspected EOS in the first 72 h of life requiring antibiotic therapy were used. We performed a cost-minimization study of health care costs, comparing standard care to PCT-guided decision making. Results In total, 1489 neonates were included in the study, of which 754 were treated according to PCT-guided decision making and 735 received standard care. Mean health care costs of PCT-guided decision making were not significantly different from costs of standard care (€3649 vs. €3616). Considering subgroups, we found a significant reduction in health care costs of PCT-guided decision making for risk category ‘infection unlikely’ and for gestational age ≥ 37 weeks in the Netherlands, Switzerland and the Czech Republic, and for gestational age < 37 weeks in the Czech Republic. Conclusions Health care costs of PCT-guided decision making of term and late-preterm neonates with suspected EOS are not significantly different from costs of standard care. Significant cost reduction was found for risk category ‘infection unlikely,’ and is affected by both the price of PCT-testing and (prolonged) hospitalization due to SAEs

    Exploring UK medical school differences: the MedDifs study of selection, teaching, student and F1 perceptions, postgraduate outcomes and fitness to practise

    Get PDF
    BACKGROUND: Medical schools differ, particularly in their teaching, but it is unclear whether such differences matter, although influential claims are often made. The Medical School Differences (MedDifs) study brings together a wide range of measures of UK medical schools, including postgraduate performance, fitness to practise issues, specialty choice, preparedness, satisfaction, teaching styles, entry criteria and institutional factors. METHOD: Aggregated data were collected for 50 measures across 29 UK medical schools. Data include institutional history (e.g. rate of production of hospital and GP specialists in the past), curricular influences (e.g. PBL schools, spend per student, staff-student ratio), selection measures (e.g. entry grades), teaching and assessment (e.g. traditional vs PBL, specialty teaching, self-regulated learning), student satisfaction, Foundation selection scores, Foundation satisfaction, postgraduate examination performance and fitness to practise (postgraduate progression, GMC sanctions). Six specialties (General Practice, Psychiatry, Anaesthetics, Obstetrics and Gynaecology, Internal Medicine, Surgery) were examined in more detail. RESULTS: Medical school differences are stable across time (median alpha = 0.835). The 50 measures were highly correlated, 395 (32.2%) of 1225 correlations being significant with p < 0.05, and 201 (16.4%) reached a Tukey-adjusted criterion of p < 0.0025. Problem-based learning (PBL) schools differ on many measures, including lower performance on postgraduate assessments. While these are in part explained by lower entry grades, a surprising finding is that schools such as PBL schools which reported greater student satisfaction with feedback also showed lower performance at postgraduate examinations. More medical school teaching of psychiatry, surgery and anaesthetics did not result in more specialist trainees. Schools that taught more general practice did have more graduates entering GP training, but those graduates performed less well in MRCGP examinations, the negative correlation resulting from numbers of GP trainees and exam outcomes being affected both by non-traditional teaching and by greater historical production of GPs. Postgraduate exam outcomes were also higher in schools with more self-regulated learning, but lower in larger medical schools. A path model for 29 measures found a complex causal nexus, most measures causing or being caused by other measures. Postgraduate exam performance was influenced by earlier attainment, at entry to Foundation and entry to medical school (the so-called academic backbone), and by self-regulated learning. Foundation measures of satisfaction, including preparedness, had no subsequent influence on outcomes. Fitness to practise issues were more frequent in schools producing more male graduates and more GPs. CONCLUSIONS: Medical schools differ in large numbers of ways that are causally interconnected. Differences between schools in postgraduate examination performance, training problems and GMC sanctions have important implications for the quality of patient care and patient safety

    The Analysis of Teaching of Medical Schools (AToMS) survey: an analysis of 47,258 timetabled teaching events in 25 UK medical schools relating to timing, duration, teaching formats, teaching content, and problem-based learning

    Get PDF
    BACKGROUND: What subjects UK medical schools teach, what ways they teach subjects, and how much they teach those subjects is unclear. Whether teaching differences matter is a separate, important question. This study provides a detailed picture of timetabled undergraduate teaching activity at 25 UK medical schools, particularly in relation to problem-based learning (PBL). METHOD: The Analysis of Teaching of Medical Schools (AToMS) survey used detailed timetables provided by 25 schools with standard 5-year courses. Timetabled teaching events were coded in terms of course year, duration, teaching format, and teaching content. Ten schools used PBL. Teaching times from timetables were validated against two other studies that had assessed GP teaching and lecture, seminar, and tutorial times. RESULTS: A total of 47,258 timetabled teaching events in the academic year 2014/2015 were analysed, including SSCs (student-selected components) and elective studies. A typical UK medical student receives 3960 timetabled hours of teaching during their 5-year course. There was a clear difference between the initial 2 years which mostly contained basic medical science content and the later 3 years which mostly consisted of clinical teaching, although some clinical teaching occurs in the first 2 years. Medical schools differed in duration, format, and content of teaching. Two main factors underlay most of the variation between schools, Traditional vs PBL teaching and Structured vs Unstructured teaching. A curriculum map comparing medical schools was constructed using those factors. PBL schools differed on a number of measures, having more PBL teaching time, fewer lectures, more GP teaching, less surgery, less formal teaching of basic science, and more sessions with unspecified content. DISCUSSION: UK medical schools differ in both format and content of teaching. PBL and non-PBL schools clearly differ, albeit with substantial variation within groups, and overlap in the middle. The important question of whether differences in teaching matter in terms of outcomes is analysed in a companion study (MedDifs) which examines how teaching differences relate to university infrastructure, entry requirements, student perceptions, and outcomes in Foundation Programme and postgraduate training

    The Analysis of Teaching of Medical Schools (AToMS) survey: an analysis of 47,258 timetabled teaching events in 25 UK medical schools relating to timing, duration, teaching formats, teaching content, and problem-based learning

    Get PDF
    Background What subjects UK medical schools teach, what ways they teach subjects, and how much they teach those subjects is unclear. Whether teaching differences matter is a separate, important question. This study provides a detailed picture of timetabled undergraduate teaching activity at 25 UK medical schools, particularly in relation to problem-based learning (PBL). Method The Analysis of Teaching of Medical Schools (AToMS) survey used detailed timetables provided by 25 schools with standard 5-year courses. Timetabled teaching events were coded in terms of course year, duration, teaching format, and teaching content. Ten schools used PBL. Teaching times from timetables were validated against two other studies that had assessed GP teaching and lecture, seminar, and tutorial times. Results A total of 47,258 timetabled teaching events in the academic year 2014/2015 were analysed, including SSCs (student-selected components) and elective studies. A typical UK medical student receives 3960 timetabled hours of teaching during their 5-year course. There was a clear difference between the initial 2 years which mostly contained basic medical science content and the later 3 years which mostly consisted of clinical teaching, although some clinical teaching occurs in the first 2 years. Medical schools differed in duration, format, and content of teaching. Two main factors underlay most of the variation between schools, Traditional vs PBL teaching and Structured vs Unstructured teaching. A curriculum map comparing medical schools was constructed using those factors. PBL schools differed on a number of measures, having more PBL teaching time, fewer lectures, more GP teaching, less surgery, less formal teaching of basic science, and more sessions with unspecified content. Discussion UK medical schools differ in both format and content of teaching. PBL and non-PBL schools clearly differ, albeit with substantial variation within groups, and overlap in the middle. The important question of whether differences in teaching matter in terms of outcomes is analysed in a companion study (MedDifs) which examines how teaching differences relate to university infrastructure, entry requirements, student perceptions, and outcomes in Foundation Programme and postgraduate training

    Object-Oriented Simulation Model Generation in an Automated Control Software Development Framework

    Get PDF
    Organised by: Cranfield UniversityThe automated development of control software for mechatronic systems requires the integration of control models for design and verification purposes. To obtain high-fidelity models, unintended behaviour of the system must be taken into account which requires knowledge about the systems architecture and component interaction. Furthermore, integration of design and analysis tools into a meta-model framework is needed to exchange system information. This paper discusses the use of Modelica to organise libraries and model the behaviour of systems in this framework, and the need for a knowledge-based tool to automatically generate these models.Mori Seiki – The Machine Tool Compan

    Structured Design Automation

    Get PDF
    Organised by: Cranfield UniversityThe next stage in product development process evolution should be the automation of labour intensive repetitive steps. The design automation strategy should follow the trend of the supply chain management approach and deliver a flexible framework, allowing local specification and adjustment The proposed Adjoined Design Automation Process Trajectory (ADAPT) and associated tools provide such a framework. It covers the process from fuzzy front-end to the evaluation of automated processes. Considerable lead time and cost savings are shown for electrical component design and the feasibility of a Domain Specific Language approach is an important step towards acceptance of design automation.Mori Seiki – The Machine Tool Compan

    Quasi-Three-Dimensional Aerodynamic Solver for Multidisciplinary Design Optimization of Lifting Surfaces

    No full text
    This paper presents the development of a quasi-three-dimensional aerodynamic solver, which provides accurate results for wing drag comparable to the higher-fidelity aerodynamic solvers at significantly lower computational costs. The proposed solver calculates the viscous wing drag using the combination of a two-dimensional airfoil analysis tool with a vortex lattice code. Validation results show that the results of the quasi-three-dimensional solver are in good agreement with higher-fidelity computational fluid dynamics solvers. The quasi-three-dimensional solver is used for a wing shape multidisciplinary design optimization. A multidisciplinary design optimization problem is formulated to design the wing shape of a typical passenger aircraft. The aircraft maximum takeoff weight is considered as the objective function. Two optimization algorithms, a local and a global optimum finder, are implemented in the multidisciplinary design optimization system. The optimization results indicate that the global optimization algorithm shows a slightly greater reduction in maximum takeoff weight. However, finding the global optimum needs about 20 times the computational time of the local optimization algorithm
    corecore