

Structured Design Automation

M.J.L. van Tooren1, S.W.G. van der Elst1, B. Vermeulen2

1 Delft University of Technology, Kluyverweg 1, 2629 HS Delft, The Netherlands
2 Stork Fokker AESP, Industrieweg 4, 3351 LB Papendrecht, The Netherlands

M.J.L.vanTooren@tudelft.nl, S.W.G.vanderElst@tudelft.nl, Brent.Vermeulen@stork.com

Abstract
The next stage in product development process evolution should be the automation of labour intensive
repetitive steps. The design automation strategy should follow the trend of the supply chain management
approach and deliver a flexible framework, allowing local specification and adjustment The proposed
Adjoined Design Automation Process Trajectory (ADAPT) and associated tools provide such a framework. It
covers the process from fuzzy front-end to the evaluation of automated processes. Considerable lead time
and cost savings are shown for electrical component design and the feasibility of a Domain Specific
Language approach is an important step towards acceptance of design automation.

Keywords:
Design automation, knowledge technologies, knowledge application, value stream mapping

1 INTRODUCTION
The value chain framework of Michael Porter [1], the
Resource Based View developed by, amongst others,
Wernerfelt and Barney [2], [3] and the Knowledge
Management Framework described by Collison and
Parcell, [4] provide us with a global and local view on what
to organise a firm for. Of course knowing what to do
leaves us with the question how to do it. In this paper a
framework is proposed to use structured design
automation in an engineering design environment to
achieve better use of resources and implement true
engineering knowledge management to improve the firms
competitive position. The proposed framework
approaches engineering knowledge as a resource which
can and should be partially addressed as a tangible asset.
It shows that the development of integrated design tools
has blurred our view on the functionality of its
components. Only through a proper understanding of this
functionality and associated technology one can (re-
)discover which part of the engineering supply chain is
covered by these tools, how it is covered and finally if and
why it should be covered in this way. The framework
offers an alternative engineering knowledge management
tool chain which is transparent and reconfigurable in a
lean way to fit the actual need of the company and to
allow insertion of one’s own proprietary knowledge.
The framework borrows elements from the lean
manufacturing approach. However, although lean
manufacturing can be used as a guideline to organise the
structured design automation process it needs supporting
philosophies and tools to achieve the required
functionality.
Starting point of the proposed approach is the assumption
that it will become more and more important to apply and
extent the abilities of current information technology
towards knowledge application technologies which can

take over many of the repetitive activities currently done
by scarce and expensive human intellectual capital. Many
of the necessary components for this transformation are
available on the market but lack coherence and
acceptance by the industry. This can be explained from
the large gap between knowledge management as
understood and implemented by managers and
knowledge management as seen by knowledge
engineering specialists from the IT-world and a small
group of believers in the engineering world. Both aim for
the same goals but are too far apart through lack of
mutual understanding. Furthermore, the wide range of
available tools and the complexity of understanding their
functions and benefits in a local engineering environment
lead to many disappointments and long lasting suspicion.
It is our aim to narrow the gap and contribute to the
further development of the methodology to implement
knowledge engineering in industry.

2 THE ADAPT PROCESS
The proposed Adjoined Design Automation Process
Trajectory (ADAPT) is an attempt to define a business
model providing a generic framework for engineering
knowledge management with a clear coupling to
knowledge technologies. The ADAPT approach should
ensure the application, implementation and added value
of these knowledge technologies and help engineering
design communities to continuously evolve by enabling
re-use and extension of their knowledge base.
The implementation of knowledge technologies in an
industrial environment in a controlled and useful way
requires an integrated, programmatic and transparent
approach. The ADAPT process shown in Figure 1 is an
attempt to frame existing methodologies and tools in a
coherent way.

CIRP Design Conference 2009

li2106
Text Box
Proceedings of the 19th CIRP Design Conference – Competitive Design, Cranfield University, 30-31 March 2009, pp86

2.1 Process Analysis
The first phase of the ADAPT process concerns an in-
depth analysis of the engineering processes performed by
the engineers, the products/services they work on and the
language they use in describing these products and
processes (indicated with the fuzzy front-end). This
analysis shall identify process improvement opportunities
by applying lean principles to the product development
activities. The process analysis is mainly focused on
knowledge-intensive activities and products belonging to a
larger set or family, ensuring a sufficiently large
applicability of the resulting knowledge application. The
deliverable of the process analysis is a value stream map
(see section 3) that shows the engineering processes and
the data, information and knowledge flowing through
these processes or generated by these processes. The
map is used to identify waste of (scarce) engineering
resources as well as opportunities to reduce this waste
using knowledge technologies that enable design
automation. For the categorisation one can use the seven

types of waste that can be identified during product
development, as presented in Table 1 [1].
Of these seven types of waste identifiable in most product
development processes, design automation mainly
addresses ‘processing’ and ‘correction’ waste. Using
Knowledge Based Engineering (KBE) techniques, expert
knowledge can be captured and reused to automate
repetitive and non-creative engineering activities, thereby
reducing product development time and cost.
The VSM is performed in close cooperation with project
managers and principal stake holders to create
awareness of the weaknesses and possibilities within the
engineering process. This way, a natural demand can
established, rather than a push model for the relatively
unfamiliar knowledge technologies. Furthermore, the
involvement of project managers in the process analysis
phase is important for a second reason: they are key
enablers of and responsible for a successful
implementation. The project managers are able to
allocate engineering resources and therefore stimulate

Figure 1: The ADAPT process

Table 1: Applying the Seven Wastes to product development [5]

the use of knowledge applications to assure business
advantages, e.g. reduced cost or increased quality.
During the analysis of the engineering design process the
flow of information, the transformation of information and
the required and applied expert knowledge is monitored.
The analysis focuses on four main characteristics:
• Required engineering resources
• Repetitiveness of engineering process within product

family
• Nature and maturity of expert knowledge
• Key performance indicators related to the identified

processes (cost, time, quality etc.)
The required engineering resources and the number of
process cycles provide insight in the cost involved in
different recurring processes in the non-recurring part of
the development of a product family. It should also offer
information about the longevity of the applied knowledge.
The domain expert knowledge is assessed to determine
its nature and maturity. When processes are highly
frequent, time-intensive, clearly defined and not subject to
change, knowledge technologies can enable automation.
During the process analysis, possible knowledge
technology architectures and applications are examined.
Furthermore a risk analysis is performed to identify the
risks involved in the development of knowledge
applications. Together the required investments, the
expected benefits and the risk analysis should justify the
implementation of KBE techniques. The analysis phase is
concluded by a selection of engineering processes to be
automated, the level of automation and a first draft of the
architecture for the constellation of knowledge tools
suitable in the context.

2.2 Knowledge acquisition
During the knowledge acquisition phase expert knowledge
involved in the engineering process is identified, captured
and structured. The knowledge acquisition phase forms
the foundation for the subsequent phases of the ADAPT
process. The knowledge acquisition phase has an
iterative character and consists of identifying, capturing,
structuring and validating the expert knowledge. The
deliverable of the knowledge acquisition phase is a
knowledge base, a digital repository containing a detailed
description of knowledge concerned with the selected
engineering process.
The quality and completeness of the captured knowledge
largely determines the success rate of the development
process hence the resulting design automation. To
guarantee a successful result, the acquisition process is
performed in close cooperation with the domain experts.
The involvement of domain experts is vital to the project
for two main reasons:
• Identification and dissemination of relevant knowledge
• Validation of quality and completeness of the captured

knowledge
Using different knowledge acquisition techniques a
conceptual model of the selected engineering process is
constructed, providing an informal but detailed description
of the activities. In order to maximise the ability for future
reuse of the captured knowledge, it is recommended that
the knowledge base hence the conceptual model is not
catered to one specific implementation (in this case: the
development of knowledge applications) and embeds a
neutral structure oriented to the engineers. This enables
the knowledge base to act as a general-purpose
fundamental base for reuse of knowledge. Other purposes
of knowledge reuse are: provide expertise and increase
awareness to stakeholders within an organisation or

reduce the risk of knowledge loss in domains where only
a small number of experts hold vital knowledge.
To obtain a neutral structure the captured engineering
knowledge is represented using natural language,
terminology from the domain under consideration and pre-
defined forms to structure the different knowledge
elements. The conceptual model contains a process
diagram focusing on the activities performed by the
engineers and is oriented to the ‘input-behaviour-output’
perspective. It mainly contains procedural knowledge and
therefore encompasses a comprehensive activity diagram
or flow chart. Besides a detailed description of the
engineering activities under consideration, the conceptual
model of the knowledge base also contains a product
centric hierarchical decomposition of the system (i.e.
product/service) into subsystems and components. This
product model is oriented to the ‘object-relation-object’
(triple) perspective and mainly contains conceptual
knowledge. The conceptual model of the knowledge base
will form the basis for the subsequent development of the
application.

2.3 Knowledge structuring
The third phase focuses on modelling the captured
knowledge. The captured engineering knowledge is
analysed and (re)structured to suit the knowledge
technologies selected for subsequent development when
the knowledge base is not the end product. The
deliverable is considered a redesigned engineering
process and provides structure and lay-out for the
knowledge application to be developed. It is also referred
to as a specification model since it provides a more
formal definition of the engineering knowledge oriented
towards software platforms. The specification model is
used to support the communication between knowledge
engineers and software developers. Together with the
expert-oriented conceptual model created during the
knowledge acquisition phase it comprises the knowledge
base. The specification model provides a structure for the
software classes representing the different product and
process elements and acts as a blueprint for the
knowledge application. It consists of two layers.
First, the specification model provides an architecture lay-
out describing the software framework environment.
Following a functional decomposition the knowledge
application is divided into several self-contained software
tools to increase the reuse and the expressiveness of the
related software code. The set of software tools provides
full functionality to execute the engineering activity under
consideration. Furthermore, the framework enables
communication between the software tools through
agents and provides a loosely coupled demand-driven
structure for the application. Within the framework, each
tool is considered an engineering service providing
functionality to the framework, for example optimisation
packages, data bases and analysis tools.
Second, the specification model contains a representation
of the central KBE application: the model generator. The
model generator is responsible for definition and
instantiation of a specific product model and is able to
generate discipline specific report files as input for
analysis tools defined in the framework environment.

2.4 Knowledge application development
The fourth phase, knowledge application development,
addresses the software development of the actual
knowledge application, e.g. the architecture and its
constituting tools (model generator, agents, optimisers,
product data management, analysis tools etc) [6].

Due to the framework approach and the modular build-up
of knowledge applications, the reuse of the different tools
is ensured to a large extend. The tools composing the
knowledge application are either already available
(commercially of the shelf (COTS) or developed and
applied during previous applications) or will need to be
developed.
Developing knowledge applications using dedicated KBE
platforms require the programming of the central model
generator: defining (new) design options and constructing
configurations within a product family. Exploiting
dedicated KBE development platforms, for example
Genworks’ GDL or the former ICAD from KTI, an object-
oriented and functional programming language is used to
encode the knowledge. The engineering knowledge is
stored into modular software objects, called High Level
Primitives (HLP). The primitives represent different design
options and can be created, tailored and assembled to
define new product configurations. The object-oriented
characteristic allows developers to resemble the
decomposition of the product defined by the conceptual
model using a network of classes.
Besides the conceptual knowledge, object-oriented
programming also allows the incorporation of procedural
knowledge using so-called facets: specific class attributes
that contain procedures (methods and references) that
are automatically invoked when the value of the slot is
requested or changed during runtime. The specific
procedures are derived from the rules in the activity
diagram of the conceptual model.
The encoding of the primitives and software modules is
considered an iterative process. During the development
of the application, additional, undiscovered or changed
knowledge might be identified and the associated models
from the knowledge base need adjustment to ensure that
they accurately represent the engineering activity as well
as the structure and process of the application.
Using object-oriented and high-level programming
languages, the resulting code volume is considered very
low. Furthermore, programming languages with a high
level of abstraction require lower entry-level programming
skills.

2.5 Tool integration and deployment
The fifth phase addresses the integration of the software
modules to form the knowledge based architecture and its
components. It includes the development of
communication interfaces and the distribution of the
application itself. The deliverable is an automated design
application based on the knowledge techniques offering
engineering services. The architecture and tools shall
support performance indicators to support their evaluation
with respect to the key performance indicators identified in
the first phase of the ADAPT process.

2.6 Business implementation
The last phase concerns the implementation of the
knowledge application in the design process. Since the
flow of information within a process will change when
deploying knowledge technology applications, a process
wide re-design is needed to prevent the occurrence of
bottlenecks creating waste [7]. Configuration management
and maintenance are conducted to ensure traceability of
the knowledge rules invoked and reproducibility of the
resulting solutions. Furthermore, an essential step in the
implementation of knowledge technologies is to recognise
that they imply an important change in the work of
engineers. Therefore, more practical attributes to a
successful implementation are support and training of
end-users. Overall, five groups of key success factors for

the implementation of KBE applications can be identified
[8]:
can
• Provide training in the operation of the application
• Provide a useful and usable user manual
• Stimulate users to share best practices in using the

application
want
• Focus on topics important to the business and

engineers
• Communicate KBE vision, need for the business,

results and experiences of users
• Evaluate the usefulness and usability of the

application on a regular basis
have
• Plan the development of the application in terms of

required resources and release date
• Make reservation in project planning to practice using

the application
• Provide support during the lifetime of the application
must
• Convince management of possible payback in terms

of lead-time and resources
• Have a well-respected engineer promote the use of

the application
measure
• Application performance in relation to the identified

key performance indicators
The last and very important aspect is the monitoring of the
performance of the application using the information
supplied by the system in relation to the key performance
indicators identified. Adaptation, cancellation and
expansion where required should be an integral part of
the process.

3 FROM VALUE STREAM MAPPING TO

STRUCTURED KNOWLEDGE
In the ADAPT framework Value Stream Mapping (VSM) is
a key tool to gain insight into the local engineering
processes. The graphical representation of the
engineering activities as well as the flow of data,
information and knowledge flowing through and generated
by those activities helps the communication about and the
understanding of the local engineering practice.
VSM originated in the manufacturing industry. Applying
proper modifications to the original VSM, this tool can also
be applied in order to improve product development
processes [9]. Where the original VSM looks critically at
the flow of material, the modified VSM looks at the
transformation and generation of data, information and
knowledge as a series of process steps interrupted by
waste: consuming engineering resources without adding
value for the customer.
By considering and mapping the current state of product
development value streams and identifying waste, VSM
defines a more efficient or lean future state while
eliminating waste that interrupts a continuous and even
flow of data, information and knowledge. The future state
diagram provides the foundation for a future process and
the subsequent action plan to implement it.
As opposed to serial value streams typical of
manufacturing, typical product development processes
consist of numerous interdependent value adding
activities. This interwoven character makes it difficult to

define flow and identify forms of waste. The key to
superior product development is to analyse the complex
network of activities into definable ‘work streams’ or sets
of subsequent process steps transforming input into
output. The work streams will not only identify the waste
of resources in between the diverse streams, they will
also pinpoint waste interrupting the process steps within
the individual streams. Numerous distinctions between
traditional VSM and product development VSM (PDVSM)
are represented in Table 2.
Within the ADAPT framework PDVSM is used to select
the engineering practices that will benefit from
automation. In addition it is the first step towards the
knowledge acquisition and knowledge structuring phases
which are leading to the knowledge base, a crucial
product of the ADAPT process.
In this knowledge base we will have process maps to
formalise the identified processes, trees to formalise
products and product families and taxonomies to
formalise the terminology used in the maps and trees.
The relation between the products and processes are
formalised with ontologies (also named diagrams), Table
3. This way the fuzzy front-end, which is the not explicitly
and consistently defined collective of local engineering
activities and their objectives (the processes, products
and language which define the local engineering practice)
is transformed into a well defined body of knowledge
suitable for further development into KBE applications or
a Design and Engineering Engines (DEE) [10].
The re-use of the knowledge in multiple KBE applications
or DEE’s needs an additional step. Most of the designers
and engineers are not willing to spend most of their time
programming, even in a high level language as normally
used in a KBE platform. Therefore a proper interface
language is needed through which knowledge can be re-
used. This will be discussed in the next section.

4 DOMAIN SPECIFIC LANGUAGES
In general products and services are designed through a
synthesis of existing and new design options into known
or new configurations. The associated design options and

processes are described by both generic, domain and
discipline specific terminology.
In order to encode all design options effectively and
correctly into the knowledge application, the
representation of the related classes and objects need to
complete multiple objectives, also known as knowledge
representation roles. Where the conceptual model
enables the communication and visualisation between
knowledge engineers and the domain experts, the
specification model is used as means of communication
for both human expression and computation (execution of
activities by knowledge applications). Especially this latter
category requires modifications and explicit specifications
(hence the name specification model) to the underlying
language in order to suite the correct interpretation by
virtual machines:
• The specification model should follow programming

language syntax
• The model should provide a visual representation for

ease of construction
• Rules governing the value of class properties are

defined
• Class and object descriptions should be intelligible for

humans (experts, knowledge engineers and software
developers)

To alleviate the required effort involved in the
development of knowledge applications a Domain Specific
modelling Language (DSL) is developed, enabling the
symbolic representation of products or systems of the
problem domain while satisfying the abovementioned
requirements.
With the help of generic language concepts like the
Unified Modelling Language (UML) a DSL is carefully
defined to enable the representation of conceptual
classes of the physical world to be meaningful to both
humans and intelligent systems. The DSL is considered a
visual dictionary of noteworthy abstractions, domain
vocabulary and knowledge content of the domain under
consideration [11]. In addition to an ontology defining the
types of elements that exist and their relations within a
particular domain, a DSL should contain not only class
types but also instances of objects and rules in order to
construct new specification models. These knowledge
elements are considered the building blocks for the
specification model, like words are to natural languages.
During the knowledge acquisition and structuring phases
it is important to get a thorough and formal description of
the different knowledge elements. The structuring of the
objects and rules applied during the design processes can
benefit from a standardised categorisation. An example of
a general categorisation for design rules is shown in Table
4.
During knowledge acquisition a systematic discovery of
the rules applied in each of these categories is performed.
The subsequent knowledge structuring should prepare for
the DSL as the interface towards the formalised
knowledge and the re-use of this knowledge (e.g. when

Fuzzy Front-end Knowledge Base Knowledge Re-use
Processes (engineering
practices and rules)

Process maps

Products (design options) Trees

Diagrams (built from
concepts and
relations)

Jargon (discipline specific
language)

Taxonomy Ontology

KBE applications (object oriented)
DEE’s
High Level Primitives
Domain Specific Languages

Table 3: Relation between product and process knowledge during different phases

Product development
process

Traditional
Manufacturing process

Virtual data flow Physical product flow

Weeks and months Seconds through hours

Primarily knowledge
intensive work

Physical manufacturing

Nonlinear and
multidirectional flows

Linear and serial
evolution

Large and diverse group
of domain experts

Primarily manufacturing
organisation

Table 2: PDVSM versus VSM

building a KBE application or a DEE).
When applied to the knowledge base using knowledge
management tools, the DSL provides domain experts,
knowledge engineers and IT specialist a means of
communication to visualise, structure and validate their
conceptual ideas. The DSL can be applied to define new
product configurations and variations within the product
family. Since the syntax of the DSL suites object-oriented
programming languages it enables the application of the
same abstractions and vocabulary to define the different
software classes underlying the knowledge applications.
Therefore it an be stated that the DSL increases the
insight in the knowledge application and the coherence
between the different knowledge application technologies.
Combined with dynamic source code generation, the
knowledge base can be applied to structure new product
configurations using existing or new design options and
automatically generate the software code representing the
associated generative product model for the knowledge
application [12].

5 KNOWLEDGE APPLICATION CASE STUDY
Following the discussion on the ADAPT process an
example of a knowledge application will be addressed.
The application has been developed applying the
automation process trajectory applying the DSL.

5.1 Wiring Harness Design Application
Electric aircraft wiring harnesses can be comprised of
hundreds of cables and ten thousands of wires, providing
connectivity between all the mission and vehicle systems
ensuring sufficient redundancy and reliability. Electrical

wiring design is often performed in parallel with structural
design. Consequently, the wiring harness design is
subject to changes in the aircraft structure that occur with
subsequent design iterations, requiring time consuming
rework for any harnesses affected. The routing for all
wires is determined manually and strongly dependent on
personal knowledge and experience. Besides, the electric
wiring design is governed by numerous regulatory and
functional design rules. The repetitive, time consuming
and rule-based nature makes aircraft wiring design a key
opportunity to develop knowledge applications
The development of the application is performed in close
corporation with Stork Fokker Elmo, a main international
player on the aircraft electric wiring market, regarding both
design and manufacturing.

Process Analysis
For the wiring harness design process, one of the key
opportunities resulting from the initial VSM involves the
pin assignment process. It involves the assignment of
electric signals at production breaks, where connectors
connect the different wiring harnesses (Figure 2). Each
wiring harness connector can include up to 150 slots,
called pins, to accommodate a signal. The pins can vary
in size, as do the signals to be assigned.
For each production break the signals are assigned to a
pin and associated connector, one by one consecutively.
This process of pin assignment is highly repetitive and
time-consuming due to several reasons:
• Separation of signals across multiple wiring harness

segments or cables is enforced by numerous
opposing design rules and regulations, for example
redundancy of flight controls, electromagnetic
compatibility or heat dissipation of power cables.

• The increasingly vast quantity of signals to be
assigned (‘processing’ waste).

• Rework caused by changes in the input data, for
example governed by design iterations for the aircraft
structural design (‘correction’ waste).

For the development of the application, the dedicated
knowledge system GDL from Genworks is selected. GDL
is a new generation knowledge system that combines the
power and flexibility of the former ICAD system with novel
web technologies. Its object-oriented programming
language is based on the standard ANSI Common Lisp
and allows the definition of generative product models.
Furthermore, ILOG CPLEX is selected to act as search
engine: the COTS linear programming optimisation tool
will analyse models provided by the generative product
model and drive the search process to a feasible and
optimal design.

Knowledge Acquisition
The iterative knowledge acquisition process of capturing,
structuring and validating the expert knowledge is
supported by Epistemics’ PCPACK a software package
supporting the process of acquiring, storing and
representing knowledge. A separate ontology is
developed, specifically built to suit the wiring harness
domain. A comprehensive description of the involved
engineering activities is defined, together with a
conceptual product decomposition of the system.
Furthermore the design rules and best practices guiding
the activities are captured, many of which are opposing.
Some examples of applicable design rules are:
• The ratio of occupied pins over available pins has a

settable maximum (design requirement)
• Signal types should be grouped among connectors to

fulfil separation requirements (authority regulations)

 Product related Process related
Internal Engineering

Design (functional,
aesthetics etc)
Management

Engineering
Tool operation
(including
work-arounds)
Tool interfacing
Management

External Mathematics
Physics
Engineering
Design
Law
Market

Mathematics
Physics
Engineering
Design
Tool operation
(including
work-arounds)
Tool interfacing

Table 4: Origins of rules in a design organisation: internal
and external related to organisation boundaries

Figure 2: Connectors applied at a wiring harness
production break

• Per connector, signals subtypes should be centred
and grouped together (manufacturing requirements)

The informal model functions as a detailed engineering
handbook decreasing the knowledge entry level required
to perform the pin assignment processes.

Knowledge structuring
During knowledge structuring, a large amount of specific
domain knowledge is crunched into a more formal model,
reflecting deep insight into the resulting knowledge
application. The formal model of the knowledge base
provides an architecture lay-out describing the software
framework environment for the application. To that
purpose, it takes into account the roles and capabilities of
the GDL and CPLEX software tools.
Although inheriting the functionality of the original
process, the redesigned process might consist of entirely
different sub-processes and activities. For example, when
the objective is to assign 70 signals across 90 available
pins fulfilling all requirements and incorporating best
practices, a human engineer will require a vast amount of
time to explore most if not all possibilities. Applying the
CPLEX optimisation software results in a much more
efficient exploration of the solution space, solving the
problem concurrently for all signals thus increasing the
reduction in recurring process time.
The object classes that constitute the product
decomposition represent the generative product model
which will be programmed during the subsequent
development phase. The object classes will encompass
the design rules and best practices, suiting the object-
oriented approach of the GDL knowledge system.
Together, these object class definitions form the DSL
representing functional building block called High-Level
Primitive (HLP) [10]. The HLPs can be tailored and
assembled enabling engineers to define new product
configuration and new design options. For instance new
connector types or pins with alternative gauges can be
defined easily.

Knowledge application development
Once the knowledge structuring of the expert knowledge
is finished and the architecture for the application fully
defined, the software modules constituting the application
are developed. For the application supporting the pin
assignment process, the application will consist of two
modules:
• A generative product model called a Multi-Model

Generator (MMG) developed using the GDL
knowledge system [10].

• A converger and evaluator, represented by the linear
programming optimiser CPLEX.

Since CPLEX is a COTS tool, the development focuses
on the MMG. The product decomposition as defined in the
formal model of the knowledge base represents the
structure of the software classes. The modular building
blocks or HLPs are programmed using the object-oriented
programming language. Each object class or HLP defined
in the formal model has an equivalent software class. It
becomes apparent that the formal model is a
diagrammatic representation of the software structure and
source code: it makes the code more expressive and
clarifies the processes and rules invoked by the
knowledge application.
Besides the HLPs, the MMG consists of elements, called
Capability Modules (CM) capable of extracting certain
discipline specific ‘views’ in order to facilitate the analysis
tools. In this particular case, the only discipline involved is
mathematics. The related CM extracts a mathematical
model of the connectors composing the production break,

defining the supply of pins as well as the demand
generated by the signals per separation code. The CM
defines the objective function (minimise the number of
pins occupied by a signal) and generates all constraints
derived from the applicable design rules. The output is a
report file, specifying a linear programming problem
modelled after the instantiated pin assignment problem.
This problem can be analysed and solved by Cplex
efficiently.
The development of the KBE software modules is
performed iteratively and can be considered domain
driven. After each iteration cycle, the formal model is
adjusted to ensure the model accurately represents the
structure and process of the knowledge application.

Tool integration and deployment
To empower the automation of repetitive tasks for of the
pin assignment problem the framework concept of the
Design and Engineering Engine is applied [10]. The DEE
integrates the self-contained software modules and
provides communication between the modules through
the application of software agents [13].
Considering the pin assignment problem, the resulting
framework functions as a stand-alone knowledge
application and has not yet been connected to the other
engineering corporate software packages. The MMG and
associated agent have been deployed on-site at Fokker
Elmo, whereas the CPLEX optimiser is executed remotely
as engineering service, on request.
A Graphical User Interface (GUI) is designed to enable
interaction with engineers. The GUI allows the engineers
to specify the input data (problem description) and
provides identified best practices as execution options,
such as grouping of signals. The GUI also enables the
engineers to manually adapt solutions as suggested by
the application through incorporated selection functionality
and provides different types of output files to
accommodate manufacturing as well as design engineers.
The GUI is presented in Figure 3 and illustrates the front
view of the set of connectors composing the production
break of the wiring harness. The different signal types are
colour-coded by separation code, to enable easy
verification by the engineers.

Business implementation and validation
The implementation of the pin assignment application into
the business environment is not yet performed and
scheduled for next year.

Figure 3: Graphical User Interface for the pin assignment
application

6 CONCLUSIONS
The ADAPT process presented offers a structured
approach towards a practical implementation of
knowledge management and Knowledge Based
Engineering in an engineering environment. It is based on
a sequence of well defined technologies, supplemented
with additional tools to complete the chain. The Value
Stream Mapping technique adapted for a product
development environment is well suited to analyse the
fuzzy front end of local engineering communities and
prepares well for subsequent knowledge acquisition and
analysis. With the use of Domain Specific Languages the
UML concept is extended to form an interface to the re-
users of the formalised knowledge. A case study showed
that the methodology works and can lead to structured
waste elimination and cost saving.

7 RECOMMENDATIONS
The case study presented in this paper addressed mainly
the elimination of ‘processing’ and ‘correction’ waste
associated to individual process steps belonging to the
value-adding or core business process. However, ADAPT
could also support the elimination of other types of waste.
A large part of the waste in the overall business process
is likely to occur in between different process steps and is
considered to be greater than the waste within single
process steps. Typical types of waste occurring in
between process steps are ‘waiting’, ‘overproducing’ and
‘inventory’.
Knowledge technologies also enable the partial
elimination of other types of waste. Integrating multiple
design automation and Commercial Of-The-Shelf (COTS)
tools into a framework structure, communication and data
handling (‘conveyance’ waste) can be controlled in a
demand-driven approach reducing ‘waiting’ ‘inventory’ and
‘overproducing’ waste.

8 ACKNOWLEDGMENTS
The authors would like to express their gratitude to
Genworks, Stork Fokker AESP and Fokker Elmo for their
support and contributions.

9 REFERENCES
[1] Porter, M., 1985, Competitive Advantage: Creating

and Sustaining Superior Performance, Free Press,
New York, NY.

[2] Wernerfelt, B., 1984, The Resource-Based View of
the Firm, Strategic Management Journal, vol. 5, No.
2: 171-180.

[3] Barney, J., 1991, Firm Resources and Sustained
Competitive Advantage, Journal of Management,
vol. 17, No. 1: 99-120.

[4] Collison, C., Parcell, G., 2001, Learning to Fly:
Practical Knowledge Management from Leading and
Learning Organisations, Capstone Publishing Ltd.,
Chichester, United Kingdom.

[5] Morgan, J., Liker, J., 2006, The Toyota Product
Development System, Productivity Press, New York,
NY.

[6] Van der Elst, S., Van Tooren, M., Vermeulen, B.,
Emberey, C., Milton, N., 2008, Application of a
Knowledge Based Design Methodology to Support
Fuselage Panel Design, Aircraft Structural Design
Conference, Liverpool, UK.

[7] Vermeulen, B., 2007, Knowledge Based Method for
solving complexity in design problems, Delft
University of Technology, Delft, The Netherlands.

[8] Van der Spek, R., Kelleher, M., Knowledge
management, reducing the costs of ignorance,
www.dnv.com/services/consulting/knowledge_mana
gement/Publications

[9] Morgan, J., 2002, High Performance Product
Development; a Systems Approach to a Lean
Product Development Process, The University of
Michigan, Ann Arbor, MI.

[10] La Rocca, G., van Tooren, M., Enabling Distributed
Multi-disciplinary Design of Complex Products: a
Knowledge Based Engineering Approach, J. Design
Research, vol. 5, No. 3: 333-352.

[11] Evans, E., 2004, Domain-Driven Design, Addison
Wesley, Boston, MA.

[12] Van der Elst, S., Van Tooren, M., 2008, Domain
Specific Modelling Languages to Support Model-
Driven Engineering of Aircraft Systems, 26th
Congress of the International Council of the
Aeronautical Sciences, Anchorage, AK.

[13] Berends, J., van Tooren, M., Schut, E., 2008,
Design and Implementation of a New Generation
Mulit-Agent Task Environment Framework. 49th
AIAA/ASME/ASCE/AHS/ASC Structures, Structural
Dynamics, and Materials Conference, Schaumburg,
IL.

