Proceedings of the 19th CIRP Design Conference — Competitive Design, Cranfield University, 30-31 March 2009, pp443

Invited Paper

Object-Oriented Simulation Model Generation in an
Automated Control Software Development Framework

M.J. Foeken, M.J.L. van Tooren

Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1,
2629HS Delft, The Netherlands

{m.j.foeken, m.j.l.vantooren}@tudelft.nl

Abstract

The automated development of control software for mechatronic systems requires the integration of control
models for design and verification purposes. To obtain high-fidelity models, unintended behaviour of the
system must be taken into account which requires knowledge about the systems architecture and
component interaction. Furthermore, integration of design and analysis tools into a meta-model framework is
needed to exchange system information. This paper discusses the use of Modelica to organise libraries and
model the behaviour of systems in this framework, and the need for a knowledge-based tool to automatically

generate these models.

Keywords:

Mechatronics control software, Object-oriented modelling, Simulation, Integration framework, Knowledge-

based engineering

1 INTRODUCTION

Nowadays, computers control industrial machines,
information devices, aircraft and office equipment to name
just a few. The development of such mechatronic products
requires the collaboration of mechanical designers,
electronic system engineers, aerodynamic engineers, and
software engineers. Whereas software development for
mechatronic systems in industry benefits from advances
in tools and supporting systems, in general they still suffer
from problems like a lack of integration across design
domains, a lack of physical modelling, the need to handle
irregular situations, and foremost, a lack of automation.

To attack these problems, a project named ‘Automatic
Generation of Control Software for Mechatronic Systems’
was started to develop a set of prototype tools and an
integration framework with which an interdisciplinary
product development team can automatically generate
control software for mechatronic systems. Figure 1 shows
the framework with the set of eight tools that will be
developed within the project, each represented as a white
block.

The project envisions the use of a functional model as
input to the control software generation process,
specifying the required functionality of the system being
developed. The ‘Function Modelling’ tool will create a
formal representation of these functions, which will be
used to generate the necessary behaviour based on
qualitative reasoning methods. At the same time, the
function model will enable the ‘Mechatronic Feature
Modelling’ tool to generate the product definition by using
mechatronic features, or function performers [1]. The
behaviour description and the mechatronic feature model
serve as an input for the mechanical embodiment and
electrical system design. Combined with data from
analysis tools as finite element method (FEM) or
computational fluid dynamics (CFD) solvers which are
often used in aerospace design, these form the basis for
the control code and control model generation processes.

CIRP Design Conference 2009

In Figure 1, these existing commercial software tools, like
e.g. CATIA for mechanical CAD design or Fluent for CFD
analysis, are represented by dashed-line blocks.

Functional
Model

Integration Framework '
Function Modeling (Modes, Communication, User Interaction)
- ¥
Function Model
a -
Mechatronics el Qﬂf;';i‘.t;c
Feature Modeling Generation
v v
Mechatronics Feature- Qualitative
based Product Definition Behaviors
—_— ke e _——a
Mechanical Quantitatf o ‘
lechanical uantitative .
: Embodiment Design | * Behavior Generation ': Controller Design }
L
Quantitative
Behavior
Ak ar
Control Code Control Mode!
, L N
Generation Generation
L4 L v v
Mechanical CAD Controller Model
Model & Protatype Contral Software Contral Made! & Pratotype
- R

Software Level Hardware & Machine
Verification Level Verification

Figure 1: Systems architecture, with the white blocks
representing tools being developed in the project.
Dashed-line blocks correspond to existing, commercial
software tools.

At the end of the design process, the generated code can
be verified at software and hardware level, using either

li2106
Text Box
Proceedings of the 19th CIRP Design Conference – Competitive Design, Cranfield University, 30-31 March 2009, pp443

the generated control models or the prototype hardware,
respectively.

The integration of design and analysis tools in an
automated framework will support a more concurrent
software design process, in contrast to the sequential
process often seen in practice, by automating the sharing
of information across the design domains.

The framework in Figure 1 shows the control code
generation and the control model generation processes in
parallel. In this view, the ‘control model' is defined as a
model of the entire system minus the control software.
This means that the control hardware, like for example a
micro controller, might be part of the control model, if
required.

The need for a control model generator in the software
development framework arises from the wish to be able to
verify the software at earlier stages of the development,
before the real hardware has been built. A high-fidelity
control model would enable the verification of the control
software by using emulation and/or simulation methods,
which on one hand partially eradicates the need for more
expensive machine based verification, and enables
software verification at earlier stages of the development
on the other.

A second point of interest to the project is the integration
of irregular situations and operating modes into the
controller design development. Software development has
to deal with irregular operation modes and abnormal
situations, as well as regular modes like initialization,
shutdown, maintenance and calibration. In terms of
verification, this not only requires the controller, but also
the control model to be adjustable to these situations.

To obtain a high fidelity model, not only the intended
behaviour as needed to realise the required functionality,
but also behaviour that was not anticipated on beforehand
must be included. In that way, unexpected side effects of
the design implementation can be discovered before
prototype testing begins.

The methodology supporting the automated generation of
control models and taking into account these
requirements is the main focus of the current research.
First, however, the implementation of modelling and
simulation concepts during the controller design process
will be discussed.

2 MODELLING AND SIMULATION

2.1 Object-Oriented Physical Modelling

As noted in [2] it is important to make a distinction
between modelling and simulation. Whereas Websters
Dictionary defines modelling as ‘o produce a
representation or simulation of,’ the Oxford Dictionary
defines it as ‘to devise a mathematical model of.’ More
accurately, modelling can be defined as creating a
simplification of reality based on physical principles, while
simulation, in the broad sense, is an imitation of
behaviour, for which mathematical models can be used.

The mathematical model normally used in controller
design, being either feedback, sequential or hybrid, is
often presented as a block diagram containing transfer
functions, representing the particular behaviour of a
system by means of state-space matrices,
eigenfrequencies and damping coefficients, and
mathematical operators. Often, linear models that are only
valid at a nominal design point are used. Matlab/Simulink
[3], the de-facto standard in controller design, fully
supports this modelling paradigm.

However, taking into account the entire system design,
there are more types of mathematical models available to

verify whether requirements are met. FEM or CFD
analysis are frequently applied methods to verify a design,
each requiring a different kind of mathematical model
based on other physical principles, and subsequently
different kinds of simulation. An integrated parallel
simulation might be attractive in terms of physical
accuracy, the computational effort and time required for
large scale CFD or FEM simulations makes the
combination unsuitable for controller verification. Instead,
combining these different types of simulations is normally
done in a sequential order, with the results of the first
used in the model of the second. With CFD methods,
ranging from linearised potential flow to the Navier-Stokes
equations, lift, drag and moment coefficients and stability
derivates for a range of airspeeds can be derived, which
are subsequently used in flight mechanics models during
controller design. Typical properties that can be derived
with these analysis tools are then used in controller
design are collected in Table 1.

The block diagrams frequently used in controller design
tools as Simulink are in principle nothing more than
mathematical equations in a visual form, where the basic
elements have no direct relation with the physical world.
To model a real-life system with such elements, it is
necessary for the designer to know:

e How to represent the expected behaviour of (a part of)
the system in mathematical equations, and,

e In what form the equations must be written such that
the input and output can be ‘connected’ to the
equations of other parts.

An alternative to this signal based approach are bond
graphs. Independent of the physical domain, the graphs
consist of basic elements like junctions, resistors and
capacitors to represent the flow of energy through the
system. This ‘physical modelling’ already makes the
modelling effort less prone to error. To move the
viewpoint of the modeller from the equation level to the
component level, bond graph elements can be combined
into a model representing a physical component.

Parallel to the application physical modelling languages,
the emergence of the object-oriented (OO) modelling
paradigm and languages like Modelica [4], allowed for
new model development methods. The OO modelling
paradigm nicely suits the engineering view on the product
definition, as models built from objects allow for a good
mimic of the real world [5].

One has to keep in mind the difference between the use
of objects as basic building blocks and the use of OO
programming concepts like encapsulation, inheritance
and polymorphism. Encapsulation is a method to ‘hide’
information, by concealing the internal methods of a class
from objects that interact with it. The part that is visible to
other objects is called the interface. Polymorphism is also
related to interfaces, and is in general a method to ensure
that different datatypes, e.g. integers or characters, can
be handled by a consistent interface. Finally, (class)
inheritance deals with the specialization of classes by
introducing subclasses which inherit the attributes and
methods of their parent class and subsequently add new
attributes and methods of their own. The use of
polymorphism and inheritance in modelling languages will
be further discussed in Section 3.2.

Although a model can be built up from components that
have object properties, the model language might not
support these basic OO concepts. Reference [6] shows
that bond graphs can be viewed as some kind of object-
oriented physical modelling, and that OO languages like
Modelica can be used to textually describe bond graphs.
Furthermore, it is argued that the principle of
encapsulation and inheritance makes the use of

component libraries and ‘the building of large and complex
engineering systems more safe.’

2.2 Related Research Object-Oriented Modelling

In the framework of the Open Library for Models of
Mechatronics Components (OLMECO) project, [2]
describes the architecture of an object-oriented library of
reusable simulation models. The model structure that is
suggested consists of three layers, being technical
components, physical concepts, and mathematical
relations. The choice for these three viewpoints based on
the fact that each of them needs consideration when
modelling. Figure 2 shows an adapted version of the top-
level view of the library architecture, using UML notation.
On the technical component level, the system
decomposition is build of from various components which
are part of a component class. These components can be
represented by a conceptual physical description, which is
build up from one or more bond graph elements,
representing mathematical equations.

The same reference also discusses the need for a
taxonomy of component classes to handle the complexity
associated with large libraries. The kind-of relations do not
restrict the structure to be tree-like, instead, a lattice
structure can also be obtained.

. 1 1. 1.0 1 component
decomposition component
class

technical component level

conceptual 1 1.*| bond graph
physical elements
description
physical concept level L
1.*
equation

mathematical level

Figure 2: Top-level view of OLMECO library architecture,
adapted from [2].

The use of objects is further extended in [7], which
presents the concept of Composable Objects, combining
form (CAD) and behaviour into a single object. By
connecting these component objects to each other
through their ports, it is possible to create both a system-
level design description and a virtual prototype of the
system. The interaction between components is port-
based, and reconfigurable, so that components of different
levels-of-detail are interchangeable. The relation between
form and behaviour is given by a parametric description,
ensuring that both remain consistent with each other. The
behaviour of a mechanical design can be derived from
constraints between parts [8].

Reference [9] discusses more about the use of an
ontology for ports to be used for automatic model
composition. With this ontology one can represent and
verify compatibility between the ports in a connection, and
reason to select the interaction models automatically.
They also note that when connecting ports one must take
into account the type of interaction taking place. Often,
these interaction models depend on the parameters of
both subsystems involved.

On the same topic, [10] presents a framework to capture
the interaction in component based design. The system
checks the compatibility of a component with a certain

interaction type, preventing the coupling of incompatible
components.

One of the issues when applying a component-based
approach for this type of physical modelling is that the
physical behaviour is not limited to the intended
behaviour, which is often described in a single domain.
An electric actuator, intended to transform electrical
energy into mechanical energy, might produce an amount
of heat that not only influences its own behaviour, but also
that of other components. The ports of a component
should therefore not be fixed nor restricted to only the
intended connections, but must depend on the system’s
implementation.

3 CONTROL MODEL GENERATION

From literature, part of which is mentioned in the previous
section, as well as from our own research, the following
prerequisites have been recognised that enable automatic
model generation in the context of the software
development framework:

¢ It must be possible to build-up the system architecture
from basic technical components.

e These components must have one or multiple
representations in the physical modelling world. The
taxonomy of the physical models should be based on
component classes, amongst others.

¢ When connecting elements the port compatibility must
be checked to prevent the coupling of incompatible
elements.

¢ Not only the intended behaviour, but also ‘secondary’
behaviour must be recognised and included.

e For the required physical system parameters it must
be possible to trace back to the providing design or
analysis tools, or e.g. a database.

Of these, the first and last item on this list are related to
integration into the development framework, whereas the
other three concerned will have to take into account the
methodology supporting the control model generation
process. Previously, the authors have identified that using
SysML [11] as a language for mechatronic system
modelling supports the integration into the development
framework by keeping an object centred view on the
system [12]. Modelica, on the other hand, supports a
component based modelling paradigm that can be used in
combination with controller design methods and tools.

In the next sections, the above mentioned points will be
further discussed. Apart from showing how SysML and
Modelica support the automated generation of control
models, the possible methodology to come from one to
the other while taking into account these requirements will
be introduced.

3.1 Mechatronic System Modelling

As stated in the introduction, the project considers
functional modelling as part of the framework. Reference
[13] considers the application of the Function-Behaviour-
State modeller [14] as a basis for this functional model
and discusses its use as a meta-modeller, facilitating the
integration of other modelling tools. It shows that SysML
is both powerful and flexible in representing the
fundamental FBS concepts, and as such can be used to
build meta-models.

The representation of the systems architecture in SysML
is based on mechatronic or physical features. These
features represent a physical component that performs a
certain function, without specifying its mechanical
embodiment beforehand and by that can be considered
as a bridge between the function and the implementation

level. The level of abstraction of the functions and the
mechatronic features is depending on the application
domain as well as the amount of ‘zoom’, and as a
consequence no common level of detail, nor a fixed
amount of features, can be defined. However, in general
the decomposition of the design continues until a physical
relation between function, model and behaviour is known
[15]. In Section 3.3 the discussion on these levels of detail
will be extended to the use of high, middle and low level
primitives as a possible solution for the automated control
model generation process.

In terms of technical implementation, the use of SysML
and the associated XML-based XMI language enable an
easy mapping of the metamodel to other languages by
means of one of the available XML processing
techniques. The integration of SysML into the systems
development process is also discussed in [16].

3.2 Polymorphic Physical System Modelling

The Modelica language has been designed to model
large, complex and hybrid physical systems and is based
on differential and algebraic equations. It supports non-
causal and object-oriented modelling techniques, and as
such stimulates the reuse of modelling knowledge.
Although the language is text-based, the models can also
be presented to the user as schematic block diagrams,
each block representing a system component.

In general, a Modelica class contains a public declaration
of parameters, variables and class instances, followed by
the definition of equations and the connections between
the instances. Connectors in Modelica can either be
energy or information based, depending on the domain.
Similar to bond graphs, the connection between physical
components is achieved by specifying a flow and a non-
flow variable for each connector, which when multiplied
have the dimension of energy or power. The input to
actuators and the output of sensors is a data stream.

The idealised dynamics model of a DC-motor can be
represented by a combination of a voltage source, a
resistor, an electrical ground, an electro-to-mechanical
transformer, and an inertia element, see Figure 3. The
parameters defining the behaviour of each of these
separate elements, like the torque constant, are typically
provided in the motor specification. Instead of showing the
entire internal structure of the DC-motor’'s model, the ‘DC-
motor’ component can be characterised by it's subelement
parameters, as in Figure 4. The information embedded in
the component is however not restricted to parameters
only, but could also contain links to mechanical CAD
drawing, including dimensions, masses, inertia, etc.

resistor

O~
abejjopeubis
&)
el
¥
1 Hr—
O

+

ground

Figure 3: Idealised DC-motor model.

However, if a non-ideal model is required, taking into
account e.g. friction and variable resistance due to
heating, the DC-motor model has to be extended with
additional elements, see Figure 5, requiring additional
parameters as well. On the technical component level
however, the element is still a ‘DC-motor’.

The possibility to switch between models or elements of
different complexity included in a bigger system model,
named polymorphic modelling by De Vries [17][18], can
be accommodated by ensuring that the ports of these
model elements are identical. In object-oriented
programming terms, coping with replacing objects is
covered by the subtyping concept, which is based on the
Liskov substitution principle [19].

<<block>> <<block>>
DCMotor DCMotor
values values
k : TorquePerAmpere k : TorquePerAmpere
R : Resistance J 1 Inertia
J: Inertia d : RotationalDamping

alpha : TemperatureCoefficient
Rref : Resistance

Tref : Temperature

C : HeatCapacity

G : ThermalConductance
Tatm : Temperature

Figure 4: ‘DC-motor’ component in SysML, left for an
idealised model, right with friction and variable resistor
due to temperature effects.

heatCapacitor

c
@}, thermalConductor fixedTemp

G=G T=T

resistor |
R=R

v _—
" =k inertia flange_b

LI L i)

abeyjopeubis
H
@
j

damper
d

ground

7
fixed

Figure 5: DC-motor model with rotational friction and
variable resistor heating.

While class inheritance is a well known and often used
concept in OO programming, the difference between
class and interface inheritance, or nominal subtyping, lies
in the fact that that the latter only describes when an
object can be used in place of another, and does not
describe the object's implementation [20]. With class
inheritance, the methods are also inherited, which can
subsequently be extended or possibly changed,
depending on the language. For the subtyping concept
inheritance is however not a requirement: an object can
also be a subtype of another object without using
interface inheritance, which is then called a structural
subtype.

The type, or interface, is that part of the class that
enables the substitution of one class with the other. In
terms of physical modelling, this means that at least the
ports or connectors of the component's physical
description must be the same. However, characteristic
parameters might also be part of the subtype, which
makes that the DC-motor models in Figure 3 and 5 can
be considered not to be subtypes.

The subtyping mechanism in Modelica is based on the
object theory of Abadi and Cardelli [21]. The language
specification defines a type or interface as ‘the “essential”
part of the public declaration sections of a class that is
needed to decide whether A can be used instead of B’ [4],
where A and B are classes or components. At the same
time, ‘A is a subtype of B, or equivalently, the interface of
A is compatible to the interface of B, if the “essential” part
of the public declaration sections of B is also available in
A

Due to the nature of the language, Modelica does not
accommodate the re-declaration of the methods of a class
(i.e. equations) when wusing the class inheritance
mechanism, which prevents the full use of the subtyping
concept when using class inheritance. Furthermore, when
comparing Figures 3 and 5, the heating resistor
component in Figure 5 is not a subclass of the normal
resistor, as the resistance R is no longer a fixed
parameter, but a variable. These two limitations prevent
the creation of a natural specialization hierarchy based on
only class inheritance relations.

This problem can be partially circumvented by using a so-
called ‘partiall model, such that one can create an
methodless superclass from which multiple subclasses
can inherit. In this way, grouping of components into
component classes is still accommodated. A hierarchic
class structure can be obtained by adding tagged
information to each class, which can be done by using
inheritance.

Altogether, Modelica enables both the use of OO
modelling concepts to structure the libraries, as well as an
object-based approach that supports the easy assembly
and updating of the models itself.

The relation between elements on component and control
model level is depicted in Figure 6.

mechatronic 1 1.7
system

component

1
meta model

1.

physical 1 1.%
component
classes

physical 1 1.7 Modelica
description element

1
control model

1.7

equation

mathematics

Figure 6: Relationships between components and
elements at different viewpoints.

3.3 Model Generation

As becomes clear from the previous sections, a one to
one mapping of components at different viewpoints is
easily possible, with Modelica providing the capabilities to
easily upgrade the physical model using object-oriented
modelling techniques. However, if unintended behaviour
due to component interaction in the model has to be
included, a direct mapping method will not be sufficient, as
additional modelling knowledge is required.

The application of knowledge engineering for the
development of conceptual simulation models is
discussed in [22]. In here, the focus is on how to capture,
represent and organise the knowledge required for
simulation modelling.

The use of expert knowledge in engineering applications
to automate that part of the design and analysis process
that is repetitive, non-creative and time-consuming can be
supported by Knowledge Based Engineering (KBE)
techniques and tools. In general, KBE tools implement
rule based design, parametric CAD and object-oriented
programming [23].

Though often the main focus is on creating new (CAD)
designs, [24] gives an example of the use of domain
specific modelling languages (DSL) as a base for KBE
models that are not restricted to the geometrical domain.
The method is applied to the design of wire-harnesses,
which is both a geometrical as well as a conceptual
problem, extending the application of KBE design
methods beyond the geometrical domain. The basic
building blocks, named high-level primitives (HLPs),
represent classes containing sets of design rules that
determine parameter values to instantiate objects. The
collection of HLPs describing the system is called the
product model and provides a parametric view on the
system. Associated capability modules (CMs) describe
processes that can be applied to the HLPs to generate
certain views on the system, like e.g. a 3D or a finite
element model.

The product models constructed using the current KBE
systems like the ICAD system or Genworks’ GDL [25] are
object-oriented and based on general-purpose
programming languages. GDL is a superset of ANSI
Common Lisp, one of the two main dialects of Lisp, which
is often used in artificial intelligence research.

The one on one mapping of these high-level primitives
from the product model into the software model making
up the DSL described in [23] and the use of CMs to obtain
a specific view on the system provides a method to
generate control models. The HLPs and CMs can be
further split up in middle and lower level primitives, related
to the various physical submodels that might be required.
The decision on which physical submodels to use is
based on the specifics of the system. The rules governing
this decision can be formalised in such a way that
information stored in or derived from the system meta-
model can be used to generate the control model.

This so-called procedural knowledge describes the
conditions under which processes or tasks are carried
out, in contrast to conceptual knowledge, which deals with
how objects are related to each other, among others. The
knowledge on which a KBE tool is based is stored in a
knowledge base, which can be split up in a process and a
product composition part [26].

The development of an ontology underlying the
knowledge base is a shared task for the entire research
project: concepts defined in the meta-model, i.e. the
features, must be related to the knowledge base on which
the control model generation process is relying. As
mechatronic systems come in quite different forms and
sizes, the amount and type of features is fully dependent
on the type of system.

Figure 7: ‘Insight’ quadrotor UAV [27].

4 APPLICATION

The concepts introduced in sections 3.1 and 3.2 will be
exemplified by looking at the ‘Insight’ quadrotor UAV as

an example mechatronic application. Shown in Figure 7,
the “Insight” is a quadrotor being developed at the Faculty
of Aerospace Engineering of Delft University of
Technology to perform indoors surveillance missions. The
aircraft weighs 72 g, has a diameter of 30 cm and an
endurance of 20 minutes while providing live streaming
video [27].

The use of partial models defining only the type of the
class can be illustrated by looking at the definition of the
rotor components. For the calculation of rotor lift and drag
multiple methods are available, the most simple only
taking into account rotor speed in combination with a fixed
lift and drag coefficient, while a more detailed model can
take into account the local velocity field, air density and
blade twist distribution. The blade’s inertia and the
mechanical connectors are shared components defined in
a partial model, while the algorithm to calculate the force
and torque generated by the rotor are added in the full
model. To capture aeroelasticity effects advanced
algorithms for the calculation of the aerodynamic force
distribution in combination with elastic structural elements
are required, which is something that can not be easily
modelled without specialist knowledge. The same holds
for phenomena like rotor-rotor and rotor-ground
interference, which requires the extension of the basic
algorithm.

Figure 8 shows the three components and two connectors
of the actuator assembly build up from standard Modelica
library components, with the rotor and DC-motor
components replaceable by other submodels.

gear
"

p dCMotor rotor
— & " _
. !:D - ;: D D
frame_a

Figure 8: Actuator assembly for quadrotor UAV using
standard Modelica library components.

i1

bdd [Model] QuadRotor[@ ActuatorAssembly])
<<subsystem>> |
ActuatorAsse mbly

<<block=>
Gear

+rotor

=<plock=>
Rotor

values

<<block=>
DCMotor

values

values

R : Resistance ratio ! double altfoll : String
k | TorquePerAmpere eta : double rotorRadius | Length
Jt ! nertia I chord | Length

bladeTwist : Angle
bladeTwistDistribution | String
numberOfBlades : Integer

b double

d: double

Jr: Inertia

Figure 9: Actuator assembly hierarchical decomposition.

The one on one mapping of the DC-motor and gear
component from the technical component view to a single
physical description in the actuator assembly shows the
problem when components are not only used for their
main functionality, but, in this case, also as a load
introducing part of the system. Instead of introducing force
and torque back to the system via the gear and DC motor,
by using standard library components they can only be
introduced directly back into the system, or via separate
3D mechanics connectors through the gear and DC
motor.

The systems meta-model in SysML consists of a
hierarchical decomposition of the system in basic
components. As in Figure 9, the actuator assembly
consists of three components at the same level. For now,
each of the components has only connectors in a single
domain, such that they can only be connected in one way.
These connectors are based on the type of energy they
represent.

- =
.1—1’_ I
compass
P psi
—g7Y
waorld
z . accelerometer . acc
oo o — H— b
UL freeMotion .

Figure 10: Sensors in the quadrotor assembly as used in
controller development tools.

ibd [System] QuadRotor[& OR2]J

<<block>> &
: Body [1]

| MechEnergy
<<subsystem>>]
: ElectronicsSub [1]
<<subsystemz> = [<<block>> =
: SensorSub [1] : Battery [1]
AC il L

<<plock>> O <<plock>> O
: Compass [1] IMU [1]

© <sbocke> @
7 | T | :VoltageRegulator [3]
: 12CData . AnalogData &
: ElectricalPower

] ElectricalPower

Figure 11: Part of sensor assembly, showing intended
connections and outputs of technical components.

Additional problems related to both the mapping of
components and the connections between components
emerge when adding sensors and actuators. Where in
normal controller design environments the output of
‘sensors’ are values of e.g. acceleration or angle, possibly
with the addition of noise and delays (Figure 10), in reality
sensors need an external power supply and the output is
either an analog or digital signal which uses a specific
type of software interface, as in Figure 11. The intended
behaviour of the sensor can thus be viewed at different
levels, each having a completely different physical
representation. This difference has also to be taken into
account in the control software generation process, which
should take care for the extraction of the data from the
analog or digital signals.

The amount of main technical components in the full
model for the quadrotor is around 20, not taking into
account the various parts of the structure. To map all of
these into not only their intended, but also their not
intended physical descriptions is already a task that
needs expert knowledge in the various physical domains,
as well as good insight in the system architecture itself.

Furthermore, even for a relatively small system like a
UAV the amount of design and analysis data, like body
mass, inertia, drag coefficients, lift and torque
coefficients, sensor noise characteristics, etc. needed to

obtain a basic model is substantial. For industrial
applications the amount of data easily becomes hard to
manage, and tool and data integration by means of (meta-
model) repositories is necessary.

5 SUMMARY

In relation to an automated control software development
framework the need for a ’control model generator’ has
been discussed. An object-oriented physical modelling
approach for the control model supports mapping of
technical component or features at the meta-model level
to physical descriptions in the control model view.

The Modelica language is well suited for polymorphic
physical modelling as well as component library
development; although the creation of class specialization
hierarchies based on class inheritance alone is not
possible.

To be able to include unintended behaviour in the control
model, the interaction between components can not be
fully predetermined. This dependence on the system
implementation requires the use of expert knowledge in
the form of formal rules. This is exemplified in the case
study, which shows that a one on one mapping from a
component based meta-model to a physical modelling
description will not result in a high-fidelity model.

The application of knowledge based engineering
techniques as a means to formalise and use this
knowledge in an automated environment is considered.
Using HLPs representing technical components as the
basic building blocks of the system, the development of an
ontology underlying the knowledge base is a shared task
in the research project.

6 FUTURE WORK

The development of a mechatronic system meta-
modelling concept based on features is the basis of the
project’s integration framework, on which various tools
and associated methodologies rely. The ontology relating
concepts in the various views on the system will enable
the creation of a knowledge base which can be used to
develop a control model generator application.

The use of a meta-model as the core of the development
framework and the integration of design and analysis tools
is the topic of separate research in the project, but is
closely related due to the dependency of a possible tool
on the information stored in the meta-model.

A knowledge-based tool able to generate control models
based on information in the meta-model requires the
acquisition of expert knowledge on physical modelling.
Supported by methods able to determine interaction
between components, the tool will be able to realise the
requirements set in the introduction.

At a later stage, the addition of 3D models to the control
model generation process will be added, to have a more
‘physical’ view on the system’s behaviour during the
verification process. This requires further integration of
design tools, notably mechanical CAD, into the
framework, such that not only design parameters, but the
visual representation can be linked to the meta-model as
well. Further application of KBE techniques to obtain and
integrate this 3D representation seems a logical step, as
parametric CAD is an integral part of most KBE platforms.

7 ACKNOWLEDGMENTS

The authors gratefully acknowledge the support of the
Dutch Innovation Oriented Research Program ‘Integrated
Product Creation and Realization (IOP-IPCR) of the
Dutch Ministry of Economic Affairs.

8 REFERENCES

(1]

(2]

(3]

(4]

(3]

(6]

(7]

(8]

(9]

[10]

(1]

[12]

[13]

[14]

[19]

[16]

[17]

Lutters-Weustink, IF, Lutters, F and Van Houten,
FJAM, 2004, Mechatronic features in product
modeling, the link between geometric and functional
modeling?, Proceedings of International Conference
on Competitive Manufacturing, Stellenbosch, South
Africa: 125-130.

Breunese, A, Top, JL, Broenink, JF and Akkermans,
JM, 1998, Libraries of Reusable Models: Theory and
Application, Simulation 71(1): 7-22.

The MathWorks, 2008, MATLAB and Simulink,
http://www.mathworks.com.

Modelica Association, 2007, Modelica Language
Specification - Version 3.0, http://www.modelica.org/
documents/ModelicaSpec30.pdf.

Sully, P, 1993, Modelling the World with Objects,
Prentice-Hall, ISBN 0-13-587791-1, Englewood CIiff,
New Jersey.

Borutzky, W, 1999, Relations between Bond Graphs
Based and Object-Oriented Physical Systems
Modelling, International Conference on Bond Graph
Modeling and Simulation, San Francisco, California,
USA: 11-17.

Paredis, CJJ, Diaz-Calderon, A, Sinha, R and
Khosla, PK, 2001, Composable Models for
Simulation-Based Design, Engineering with
Computers 17: 112—-128.

Sinha, R, Paredis, CJJ and Khosla, PK, 2000,
Integration of Mechanical CAD and Behavioural
Modelling, IEEE/ACM International Workshop on
Behavioral Modeling and Simulation, Orlando,
Florida, USA: 31-36.

Liang, V-C and Paredis, CJJ, 2003, A Port Ontology
for Automated Model Composition, Proceedings of
the 2003 Winter Simulation Conference, 1: 613-622.

Lee, EA and Xiong, Y, 2001, System-Level Types
for Component-Based Design, Lecture Notes in
Computer Science 2211.

Object Management Group, 2007, OMG Systems
Modelling Language, http://www.omgsysml.org.

Foeken, MJ, Voskuijl, M, Alvarez Cabrera, AA and
Van Tooren, MJL, 2008, Model Generation for the
Verification of Automatically Generated Mechatronic
Control Software, IEEE/ASME International
Conference on Mechatronic and Embedded
Systems and Applications, Beijing, China: 275-280.

Alvarez Cabrera, AA, Erden, MS and Tomiyama, T,
2009, On the Potential of Function-Behavior-State
(FBS) Methodology for the Integration of Modelling
Tools, CIRP Design Conference 2009, Cranfield,
UK.

Tomiyama, T and Umeda, Y, 1993, A CAD for
functional design, Annals of CIRP'93, 42(1): 143-
146.

Schut, EJ, Van Tooren, MJL and Berends, JPTJ ,
2008, Feasilization of a Structural Wing Design
Problem, 49th AIAA/ASME/ASCE/AHS/ASC
Structures, Structural Dynamics, and Materials
Conference, Schaumburg, IL, USA.

Friedenthal, S, Moore, A and Steiner, R, 2008, A
Practical Guide to SysML: The Systems Modeling
Language, Morgan Kaufmann, Burlington,
Massachusetts, USA: 489-508.

De Vries, TJA, 1994, Conceptual Design of
Controlled Electro-Mechanical Systems, Ph.D.
thesis, University of Twente, The Netherlands.

(18]

(19]

(20]

[21]

(22]

(23]

De Vries, TJA, Breedveld, PC and Meindertsma, P,
1993, Polymorphic Modelling of Engineering
Systems, International Conference on Bond Graph
Modelling, San Diego, California, USA: 17-22.

Liskov, B, 1987, Keynote Address - Data Abstraction
and Hierarchy, OOPSLA ’'87: Addendum to the
Proceedings on Object-Oriented Programming
Systems, Languages and Applications, New York,
NY, USA: 17-34.

Gamma, E, Helms, R, Johnson, R and Vlissides, J,
1995, Design Patterns — Elements of Reusable
Object-Oriented Software, 1st ed., Addison-Wesley.

Abadi, M and Cardelli, L, 1996, A Theory of Objects,
Springer, New York, NY, USA.

Zhou, M, Son, YJ and Chen, Z, 2003, Knowledge
Representation for Conceptual Simulation Modeling,
Proceedings of the 2004 Winter Simulation
Conference: 450—458.

La Rocca, G and Van Tooren, MJL, 2007, Enabling
Distributed Multi-Disciplinary Design of Complex

(24]

(25]

Products: a Knowledge Based Engineering
Approach, Journal of Design Research 3(5).

Van der Elst, S and Van Tooren, MJL, 2008,
Development of a Domain Specific Modeling
Language to Support Generative Model-Driven
Engineering of Aircraft Design, 26th Congress of
International Council of the Aeronautical Sciences
(ICAS) , Anchorage, Alaska, USA.

Genworks International, 2008, General-Purpose,
Declarative, Language, http://www.genworks.com.

[26] Stokes, M, 2001, Managing Engineering Knowledge:
MOKA Methodology and Tools Oriented
Knowledge Based Engineering Applications.

Professional Engineering Publishing Ltd.

[27] Insight Team, 2007, ‘The Insight,’
Aerospace Engineering, Delft

report.

Characteristic Physical domain

Input and method

Lift / downforce Aerodynamic

Drag

Aerodynamic

Stability derivates Aerodynamic

Stiffness Mechanical
Eigenfrequency Mechanical
Buckling strength Mechanical

Heat capacity Thermodynamic

2D/3D geometry i.c.w. a fluid dynamics solver at
certain conditions (speed, direction) to obtain lift
coefficient.

2D/3D geometry i.c.w. a fluid dynamics solver at
certain conditions (speed, direction) to obtain
drag coefficient.

2D/3D geometry i.c.w. a fluid dynamics solver at
range of conditions (speed, direction) to obtain
forces and moment. Further calculations to
obtain derivatives.

3D geometry with material properties i.c.w. a
finite element solver to obtain stiffness matrices.
3D geometry with material properties i.c.w. a
finite element solver to obtain eigenfrequencies.
3D geometry with material properties, i.c.w.finite
element solver to obtain strength

Geometry with material properties i.c.w. finite
element solver to obtain total capacity

Table 1: System characteristics and associated analysis tools.

Faculty of
University
Technology, Delft, The Netherlands, D.S.E. final

