8 research outputs found

    Human ISPD Is a Cytidyltransferase Required for Dystroglycan O-Mannosylation

    Full text link
    A unique, unsolved O-mannosyl glycan on α-dystroglycan is essential for its interaction with protein ligands in the extracellular matrix. Defective O-mannosylation leads to a group of muscular dystrophies, called dystroglycanopathies. Mutations in isoprenoid synthase domain containing (ISPD) represent the second most common cause of these disorders, however, its molecular function remains uncharacterized. The human ISPD (hISPD) crystal structure showed a canonical N-terminal cytidyltransferase domain linked to a C-terminal domain that is absent in cytidyltransferase homologs. Functional studies demonstrated cytosolic localization of hISPD, and cytidyltransferase activity toward pentose phosphates, including ribulose 5-phosphate, ribose 5-phosphate, and ribitol 5-phosphate. Identity of the CDP sugars was confirmed by liquid chromatography quadrupole time-of-flight mass spectrometry and two-dimensional nuclear magnetic resonance spectroscopy. Our combined results indicate that hISPD is a cytidyltransferase, suggesting the presence of a novel human nucleotide sugar essential for functional α-dystroglycan O-mannosylation in muscle and brain. Thereby, ISPD deficiency can be added to the growing list of tertiary dystroglycanopathies

    A homozygous DPM3 mutation in a patient with alpha-dystroglycan-related limb girdle muscular dystrophy.

    No full text
    Defects of O-linked glycosylation of alpha-dystroglycan cause a wide spectrum of muscular dystrophies ranging from severe congenital muscular dystrophy associated with abnormal brain and eye development to mild limb girdle muscular dystrophy. We report a female patient who developed isolated pelvic girdle muscle weakness and wasting, which became symptomatic at age 42. Exome sequencing uncovered a homozygous c.131T > G (p.Leu44Pro) substitution in DPM3, encoding dolichol-P-mannose (DPM) synthase subunit 3, leading to a 50% reduction of enzymatic activity. Decreased availability of DPM as an essential donor substrate for protein O-mannosyltransferase (POMT) 1 and 2 explains defective skeletal muscle alpha-dystroglycan O-glycosylation. Our findings show that DPM3 mutations may lead to an isolated and mild limb girdle muscular dystrophy phenotype without cardiomyopathy

    Corrigendum to "A homozygous DPM3 mutation in a patient with alpha-dystroglycan-related limb girdle muscular dystrophy" [Neuromuscular disorders 27/11 (2017) 1043-1046].

    No full text
    The authors regret that in the Abstract and in the Molecular Analysis paragraphs of the above paper, the following was incorrect: “a homozygous c.131T > G (p.Leu44Pro) substitution”. This should read “a homozygous c.131T > C (p.Leu44Pro) substitution”. The authors would like to apologise for any inconvenience caused. They would like to thank Sally Heywood, Research Assistant, Human Gene Mutation Database, Institute of Medical Genetics, Cardiff University for bringing this error to their attention

    Human ISPD Is a Cytidyltransferase Required for Dystroglycan O-Mannosylation.

    Get PDF
    A unique, unsolved O-mannosyl glycan on α-dystroglycan is essential for its interaction with protein ligands in the extracellular matrix. Defective O-mannosylation leads to a group of muscular dystrophies, called dystroglycanopathies. Mutations in isoprenoid synthase domain containing (ISPD) represent the second most common cause of these disorders, however, its molecular function remains uncharacterized. The human ISPD (hISPD) crystal structure showed a canonical N-terminal cytidyltransferase domain linked to a C-terminal domain that is absent in cytidyltransferase homologs. Functional studies demonstrated cytosolic localization of hISPD, and cytidyltransferase activity toward pentose phosphates, including ribulose 5-phosphate, ribose 5-phosphate, and ribitol 5-phosphate. Identity of the CDP sugars was confirmed by liquid chromatography quadrupole time-of-flight mass spectrometry and two-dimensional nuclear magnetic resonance spectroscopy. Our combined results indicate that hISPD is a cytidyltransferase, suggesting the presence of a novel human nucleotide sugar essential for functional α-dystroglycan O-mannosylation in muscle and brain. Thereby, ISPD deficiency can be added to the growing list of tertiary dystroglycanopathies

    Dynamic analysis of sugar metabolism reveals the mechanisms of action of synthetic sugar analogs

    No full text
    Synthetic sugar analogs are widely applied in metabolic oligosaccharide engineering (MOE) and as novel drugs to interfere with glycoconjugate biosynthesis. However, mechanistic insights on their exact metabolism in the cell and over time are mostly lacking. We developed sensitive ion-pair UHPLC-QqQ mass spectrometry methodology for analysis of sugar metabolites in organisms and in model cells and identified novel low abundant nucleotide sugars in human cells, such as ADP-glucose and UDP-arabinose, and CMP-sialic acid (CMP-NeuNAc) in Drosophila. Dynamic tracing of propargyloxycarbonyl (Poc) labeled analogs, commonly used for MOE, revealed that ManNPoc is metabolized to both CMP-NeuNPoc and UDP-GlcNPoc. Finally, combined treatment of B16-F10 melanoma cells with antitumor compound 3Fax-NeuNAc and 13C-labeled GlcNAc revealed that endogenous CMP-NeuNAc levels started to decrease before a subsequent decrease of ManNAc 6-phosphate was observed. This implicates 3Fax-NeuNAc first acts as a substrate for cytosolic CMP-sialic acid synthetase and subsequently its product CMP-3Fax-NeuNAc functions as a feed-back inhibitor for UDP-GlcNAc 2-epimerase/N-acetylmannosamine kinase. Thus, dynamic analysis of sugar metabolites provides key insights into the time-dependent metabolism of synthetic sugars, which is important for the rational design of analogs with optimized effects

    Dynamic tracing of sugar metabolism reveals the mechanisms of action of synthetic sugar analogs

    Get PDF
    Synthetic sugar analogs are widely applied in metabolic oligosaccharide engineering (MOE) and as novel drugs to interfere with glycoconjugate biosynthesis. However, mechanistic insights on their exact cellular metabolism over time are mostly lacking. We combined ion-pair UHPLC-QqQ mass spectrometry using tributyl- and triethylamine buffers for sensitive analysis of sugar metabolites in cells and organisms and identified low abundant nucleotide sugars, such as UDP-arabinose in human cell lines and CMP-sialic acid (CMP-NeuNAc) in Drosophila. Furthermore, MOE revealed that propargyloxycarbonyl (Poc) labeled ManNPoc was metabolized to both CMP-NeuNPoc and UDP-GlcNPoc. Finally, time-course analysis of the effect of antitumor compound 3Fax-NeuNAc by incubation of B16-F10 melanoma cells with N-acetyl-D-[UL-13C6]glucosamine revealed full depletion of endogenous ManNAc 6-phosphate and CMP-NeuNAc within 24 hour. Thus, dynamic tracing of sugar metabolic pathways provides a general approach to reveal time-dependent insights into the metabolism of synthetic sugars, which is important for the rational design of analogs with optimized effects.ISSN:0959-665
    corecore