11 research outputs found

    Disrupted iron regulation in the brain and periphery in cocaine addiction

    Get PDF
    Stimulant drugs acutely increase dopamine neurotransmission in the brain, and chronic use leads to neuroadaptive changes in the mesolimbic dopamine system and morphological changes in basal ganglia structures. Little is known about the mechanisms underlying these changes but preclinical evidence suggests that iron, a coenzyme in dopamine synthesis and storage, may be a candidate mediator. Iron is present in high concentrations in the basal ganglia and stimulant drugs may interfere with iron homeostasis. We hypothesised that morphological brain changes in cocaine addiction relate to abnormal iron regulation in the brain and periphery. We determined iron concentration in the brain, using quantitative susceptibility mapping, and in the periphery, using iron markers in circulating blood, in 44 patients with cocaine addiction and 44 healthy controls. Cocaine-addicted individuals showed excess iron accumulation in the globus pallidus, which strongly correlated with duration of cocaine use, and mild iron deficiency in the periphery, which was associated with low iron levels in the red nucleus. Our findings show that iron dysregulation occurs in cocaine addiction and suggest that it arises consequent to chronic cocaine use. Putamen enlargement in these individuals was unrelated to iron concentrations, suggesting that these are co-occurring morphological changes that may respectively reflect predisposition to, and consequences of cocaine addiction. Understanding the mechanisms by which cocaine affects iron metabolism may reveal novel therapeutic targets, and determine the value of iron levels in the brain and periphery as biomarkers of vulnerability to, as well as progression and response to treatment of cocaine addiction

    Application of urine proteomics for biomarker discovery in drug-induced liver injury

    No full text
    Abstract The leading cause of hepatic damage is drug-induced liver injury (DILI), for which currently no adequate predictive biomarkers are available. Moreover, for most drugs related to DILI, the mechanisms underlying the adverse reaction have not yet been elucidated. Urinary protein biomarker candidates for DILI have emerged in the past few years and correlate well with clinical studies for serum DILI biomarkers. The goal of this review was to investigate the use of urine as a source of protein biomarkers for drug-induced liver injury. Finally, we discuss some of the current strategies required to advance the field of biomarker discovery for DILI with respect to appropriate clinical biobanking and adequate translational research

    Application of urine proteomics for biomarker discovery in drug-induced liver injury

    No full text

    Pre-administration of turmeric prevents methotrexate-induced liver toxicity and oxidative stress

    Get PDF
    Background: Methotrexate (MTX) is an antimetabolite broadly used in treatment of cancer and autoimmune diseases. MTX-induced hepatotoxicity limits its application. We investigated hepatoprotective effects of turmeric in MTX-induced liver toxicity. Methods: All experiments were performed on male Wistar albino rats that were randomly divided into six groups. Group one received saline orally for 30 days (control group), groups two and three received turmeric extract (100, 200 mg/kg respectively) orally for 30 days, group four received single dose, of MTX IP at day 30, groups five and six received turmeric extract 100 and 200 mg/kg orally respectively for 30 days and single dose of methoterxate IP (20 mg/kg) at day 30. Four days after MTX injection animals were sacrificed and evaluated. Blood ALT and AST (indicators of hepatocyte injury), ALP and bilirubin (markers of biliary function), albumin (reflect liver synthetic function) as well as the plasma TAS concentration (antioxidant defenses) were determined. The cellular antioxidant defense activities were examined in liver tissue samples using SOD, CAT, and GSH-Px for the oxidative stress, and MDA for lipid peroxidation. In addition, liver damage was evaluated histopathologically. Results: MTX significantly induced liver damage (P less than 0.05) and decreased its antioxidant capacity, while turmeric was hepatoprotective. Liver tissue microscopic evaluation showed that MTX treatment induced severe centrilobular and periportal degeneration, hyperemia of portal vein, increased artery inflammatory cells infiltration and necrosis, while all of histopathological changes were attenuated by turmeric (200 mg/kg). Conclusion: Turmeric extract can successfully attenuate MTX-hepatotoxicity. The effect is partly mediated through extracts antinflammatory activity.Funding Agencies|University of Manitoba start-up fund; Linkoping University; IGEN; Cancerfonden [2013/391]; VR-NanoVision [K2012-99X-22325-01-5]</p
    corecore