7,469 research outputs found

    The locations of features in the mass distribution of merging binary black holes are robust against uncertainties in the metallicity-dependent cosmic star formation history

    Full text link
    New observational facilities are probing astrophysical transients such as stellar explosions and gravitational wave (GW) sources at ever increasing redshifts, while also revealing new features in source property distributions. To interpret these observations, we need to compare them to predictions from stellar population models. Such models require the metallicity-dependent cosmic star formation history (S(Z,z)\mathcal{S}(Z,z)) as an input. Large uncertainties remain in the shape and evolution of this function. In this work, we propose a simple analytical function for S(Z,z)\mathcal{S}(Z,z). Variations of this function can be easily interpreted, because the parameters link to its shape in an intuitive way. We fit our analytical function to the star-forming gas of the cosmological TNG100 simulation and find that it is able to capture the main behaviour well. As an example application, we investigate the effect of systematic variations in the S(Z,z)\mathcal{S}(Z,z) parameters on the predicted mass distribution of locally merging binary black holes (BBH). Our main findings are: I) the locations of features are remarkably robust against variations in the metallicity-dependent cosmic star formation history, and II) the low mass end is least affected by these variations. This is promising as it increases our chances to constrain the physics that governs the formation of these objects.Comment: Submitted to ApJ, made with showyourwork, code available at https://github.com/LiekeVanSon/SFRD_fi

    Mechanisms of spin-polarized current-driven magnetization switching

    Full text link
    The mechanisms of the magnetization switching of magnetic multilayers driven by a current are studied by including exchange interaction between local moments and spin accumulation of conduction electrons. It is found that this exchange interaction leads to two additional terms in the Landau-Lifshitz-Gilbert equation: an effective field and a spin torque. Both terms are proportional to the transverse spin accumulation and have comparable magnitudes

    Pulsational pair-instability supernovae in gravitational-wave and electromagnetic transients

    Full text link
    Current observations of binary black-hole ({BBH}) merger events show support for a feature in the primary BH-mass distribution at 35M\sim\,35\,\mathrm{M}_{\odot}, previously interpreted as a signature of pulsational pair-instability (PPISN) supernovae. Such supernovae are expected to map a wide range of pre-supernova carbon-oxygen (CO) core masses to a narrow range of BH masses, producing a peak in the BH mass distribution. However, recent numerical simulations place the mass location of this peak above 50M50\,\mathrm{M}_{\odot}. Motivated by uncertainties in the progenitor's evolution and explosion mechanism, we explore how modifying the distribution of BH masses resulting from PPISN affects the populations of gravitational-wave (GW) and electromagnetic (EM) transients. To this end, we simulate populations of isolated {BBH} systems and combine them with cosmic star-formation rates. Our results are the first cosmological BBH-merger predictions made using the \textsc{binary\_c} rapid population synthesis framework. We find that our fiducial model does not match the observed GW peak. We can only explain the 35M35\,\mathrm{M}_{\odot} peak with PPISNe by shifting the expected CO core-mass range for PPISN downwards by 15M\sim{}15\,\mathrm{M}_{\odot}. Apart from being in tension with state-of-the art stellar models, we also find that this is likely in tension with the observed rate of hydrogen-less super-luminous supernovae. Conversely, shifting the mass range upward, based on recent stellar models, leads to a predicted third peak in the BH mass function at 64M\sim{}64\,\mathrm{M}_{\odot}. Thus we conclude that the 35M\sim{}35\,\mathrm{M}_{\odot} feature is unlikely to be related to PPISNe.Comment: Accepted for publication in MNRAS. 19 pages, 8 figures includings appendice

    Generating topological order from a 2D cluster state using a duality mapping

    Full text link
    In this paper we prove, extend and review possible mappings between the two-dimensional Cluster state, Wen's model, the two-dimensional Ising chain and Kitaev's toric code model. We introduce a two-dimensional duality transformation to map the two-dimensional lattice cluster state into the topologically-ordered Wen model. Then, we subsequently investigates how this mapping could be achieved physically, which allows us to discuss the rate at which a topologically ordered system can be achieved. Next, using a lattice fermionization method, Wen's model is mapped into a series of one-dimensional Ising interactions. Considering the boundary terms with this mapping then reveals how the Ising chains interact with one another. The relationships discussed in this paper allow us to consider these models from two different perspectives: From the perspective of condensed matter physics these mappings allow us to learn more about the relation between the ground state properties of the four different models, such as their entanglement or topological structure. On the other hand, we take the duality of these models as a starting point to address questions related to the universality of their ground states for quantum computation.Comment: 5 Figure

    Investigating the Chemically Homogeneous Evolution Channel and its Role in the Formation of the Enigmatic Binary Black Hole Progenitor Candidate HD 5980

    Full text link
    Chemically homogeneous evolution (CHE) is a promising channel for forming massive binary black holes. The enigmatic, massive Wolf-Rayet (WR) binary HD 5980 A&B has been proposed to have formed through this channel. We investigate this claim by comparing its observed parameters with CHE models. Using MESA, we simulate grids of close massive binaries then use a Bayesian approach to compare them with the stars' observed orbital period, masses, luminosities, and hydrogen surface abundances. The most probable models, given the observational data, have initial periods ~3 days, widening to the present-day ~20 day orbit as a result of mass loss -- correspondingly, they have very high initial stellar masses (\gtrsim150 M_\odot). We explore variations in stellar wind-mass loss and internal mixing efficiency, and find that models assuming enhanced mass-loss are greatly favored to explain HD 5980, while enhanced mixing is only slightly favoured over our fiducial assumptions. Our most probable models slightly underpredict the hydrogen surface abundances. Regardless of its prior history, this system is a likely binary black hole progenitor. We model its further evolution under our fiducial and enhanced wind assumptions, finding that both stars produce black holes with masses ~19-37 M_\odot. The projected final orbit is too wide to merge within a Hubble time through gravitational waves alone. However, the system is thought to be part of a 2+2 hierarchical multiple. We speculate that secular effects with the (possible) third and fourth companions may drive the system to promptly become a gravitational-wave source.Comment: 23 pages, 9 figures, 2 tables, 2 appendices. Accepted for publication in Ap

    No peaks without valleys: The stable mass transfer channel for gravitational-wave sources in light of the neutron star-black hole mass gap

    Full text link
    Gravitational-wave (GW) detections are starting to reveal features in the mass distribution of double compact objects. The lower end of the black hole (BH) mass distribution is especially interesting as few formation channels contribute here and because it is more robust against variations in the cosmic star formation than the high mass end. In this work we explore the stable mass transfer channel for the formation of GW sources with a focus on the low-mass end of the mass distribution. We conduct an extensive exploration of the uncertain physical processes that impact this channel. We note that, for fiducial assumptions, this channel reproduces the peak at 9M\sim9 \mathrm{M_{\odot}} in the GW-observed binary BH mass distribution remarkably well, and predicts a cutoff mass that coincides with the upper edge of the purported neutron star BH mass gap. The peak and cutoff mass are a consequence of unique properties of this channel, namely (1) the requirement of stability during the mass transfer phases, and (2) the complex way in which the final compact object masses scale with the initial mass. We provide an analytical expression for the cutoff in the primary component mass and show that this adequately matches our numerical results. Our results imply that selection effects resulting from the formation channel alone can provide an explanation for the purported neutron star--BH mass gap in GW detections. This provides an alternative to the commonly adopted view that the gap emerges during BH formation.Comment: Accepted for publication in ApJ associated code is available at https://github.com/LiekeVanSon/LowMBH_and_StableChanne

    Current driven switching of magnetic layers

    Full text link
    The switching of magnetic layers is studied under the action of a spin current in a ferromagnetic metal/non-magnetic metal/ferromagnetic metal spin valve. We find that the main contribution to the switching comes from the non-equilibrium exchange interaction between the ferromagnetic layers. This interaction defines the magnetic configuration of the layers with minimum energy and establishes the threshold for a critical switching current. Depending on the direction of the critical current, the interaction changes sign and a given magnetic configuration becomes unstable. To model the time dependence of the switching process, we derive a set of coupled Landau-Lifshitz equations for the ferromagnetic layers. Higher order terms in the non-equilibrium exchange coupling allow the system to evolve to its steady-state configuration.Comment: 8 pages, 2 figure. Submitted to Phys. Rev.

    Thermally driven spin injection from a ferromagnet into a non-magnetic metal

    Get PDF
    Creating, manipulating and detecting spin polarized carriers are the key elements of spin based electronics. Most practical devices use a perpendicular geometry in which the spin currents, describing the transport of spin angular momentum, are accompanied by charge currents. In recent years, new sources of pure spin currents, i.e., without charge currents, have been demonstrated and applied. In this paper, we demonstrate a conceptually new source of pure spin current driven by the flow of heat across a ferromagnetic/non-magnetic metal (FM/NM) interface. This spin current is generated because the Seebeck coefficient, which describes the generation of a voltage as a result of a temperature gradient, is spin dependent in a ferromagnet. For a detailed study of this new source of spins, it is measured in a non-local lateral geometry. We developed a 3D model that describes the heat, charge and spin transport in this geometry which allows us to quantify this process. We obtain a spin Seebeck coefficient for Permalloy of -3.8 microvolt/Kelvin demonstrating that thermally driven spin injection is a feasible alternative for electrical spin injection in, for example, spin transfer torque experiments

    Anatomy of Spin-Transfer Torque

    Full text link
    Spin-transfer torques occur in magnetic heterostructures because the transverse component of a spin current that flows from a non-magnet into a ferromagnet is absorbed at the interface. We demonstrate this fact explicitly using free electron models and first principles electronic structure calculations for real material interfaces. Three distinct processes contribute to the absorption: (1) spin-dependent reflection and transmission; (2) rotation of reflected and transmitted spins; and (3) spatial precession of spins in the ferromagnet. When summed over all Fermi surface electrons, these processes reduce the transverse component of the transmitted and reflected spin currents to nearly zero for most systems of interest. Therefore, to a good approximation, the torque on the magnetization is proportional to the transverse piece of the incoming spin current.Comment: 16 pages, 8 figures, submitted to Phys. Rev.
    corecore