Creating, manipulating and detecting spin polarized carriers are the key
elements of spin based electronics. Most practical devices use a perpendicular
geometry in which the spin currents, describing the transport of spin angular
momentum, are accompanied by charge currents. In recent years, new sources of
pure spin currents, i.e., without charge currents, have been demonstrated and
applied. In this paper, we demonstrate a conceptually new source of pure spin
current driven by the flow of heat across a ferromagnetic/non-magnetic metal
(FM/NM) interface. This spin current is generated because the Seebeck
coefficient, which describes the generation of a voltage as a result of a
temperature gradient, is spin dependent in a ferromagnet. For a detailed study
of this new source of spins, it is measured in a non-local lateral geometry. We
developed a 3D model that describes the heat, charge and spin transport in this
geometry which allows us to quantify this process. We obtain a spin Seebeck
coefficient for Permalloy of -3.8 microvolt/Kelvin demonstrating that thermally
driven spin injection is a feasible alternative for electrical spin injection
in, for example, spin transfer torque experiments