2,206 research outputs found

    International Comparisons of Work Disability

    Get PDF

    International Comparisons of Work Disability

    Get PDF

    Huxley-type cross-bridge models in largeish-scale musculoskeletal models; an evaluation of computational cost

    Get PDF
    A Huxley-type cross-bridge model is attractive because it is inspired by our current understanding of the processes underlying muscle contraction, and because it provides a unified description of muscle's mechanical behavior and metabolic energy expenditure. In this study, we determined the computational cost for task optimization of a largeish-scale musculoskeletal model in which muscles are represented by a 2-state Huxley-type cross-bridge model. Parameter values defining the rate functions of the Huxley-type cross-bridge model could be chosen such that the steady-state force-velocity relation resembled that of a Hill-type model. Using these parameter values, maximum-height squat jumping was used as the example task to evaluate the computational cost of task optimization for a skeletal model driven by a Huxley-type cross-bridge model. The optimal solutions for the Huxley- and Hill-type muscle models were similar for all mechanical variables considered. Computational cost of the Huxley-type cross-bridge model was much higher than that of the Hill-type model. Compared to the Hill-type model, the number of state variables per muscle was large (2 vs about 18,000), the integration step size had to be about 100 times smaller, and the computational cost per integration step was about 100 times higher

    Phylogenetic relationships among NE Atlantic <i>Plocamionida</i> Topsent (1927) (Porifera, Poecilosclerida): under-estimated diversity in reef ecosystems

    Get PDF
    Background: Small and cryptic sponges associated with cold-water coral reefs are particularly numerous and challenging to identify, but their ecological and biochemical importance is likely to compete with megabenthic specimens.Methodology/Principal Findings: Here we use a combination of the standard M1M6 and I3M11 partitions of the COI fragment, partial rDNA 28S sequences and morphology to delineate small encrusting Plocamionida species. In total, 46 specimens were retrieved from seven shallow to deep-water coral locations, crossing 3,000 km along the European margins. Our work provides evidence that the Plocamionida ambigua f. tylotata and f. grandichelata can be considered valid species, whereas Plocamionida ambigua f. tornata corresponds to the species P. ambigua. Within the monophyletic group of Plocamionida, P. microcionides is shown as really divergent from the other taxa, and four putative new Plocamionida species are suggested.Conclusions/Significance: This study shows that the use of molecular and morphological information in an integrative approach is a powerful tool for the identification of sponge species, and suggests that an under-estimated biodiversity of sponges occurs in cold-water coral reefs

    Multi-Tone Microwave Locking via Real-Time Feedback

    Full text link
    Environmental noise coupling to mechanical experiments often introduces low-frequency fluctuations to the resonators, adding noise to measurements and reducing signal to noise. To counter these fluctuations, we demonstrate a dynamic feedback system implemented by the locking of a microwave drive to the noisy cavity. A homodyne interferometer scheme monitors the cavity resonance fluctuations due to low-frequency noise, which is mitigated by frequency-modulating (FM) the microwave generator. The feedback has a bandwidth of 400400 Hz, with a reduction of cavity fluctuations by 84%84\% integrating up to a bandwidth of 22 kHz. Moreover, the cavity resonance frequency fluctuations are reduced by 73%73\%. This scheme can be scaled to enable multi-tone experiments locked to the same feedback signal. As a demonstration, we apply the feedback to an optomechanical experiment and implement a cavity-locked, multi-tone mechanical measurement. As low-frequency cavity frequency noise can be a limiting factor in many experiments, the multi-tone microwave locking technique presented here is expected to be relevant for a wide range of fields of research.Comment: 7 pages, 5 figure

    Affinities of the family Sollasellidae (Porifera, Demospongiae). I. Morphological evidence

    Get PDF
    Comparison of Sollasella digitata Lendenfeld, 1888, up until the present assigned to its own family Sollasellidae Lendenfeld, 1887 in the order Hadromerida, and Raspailopsis cervicornis Burton, 1959, assigned to Raspailiidae Nardo, 1833 in the order Poecilosclerida, leads to the conclusion that both should be considered congeneric and are best assigned to a single genus Sollasella. This conclusion is based on examination of habit and skeletal characters of the type material of S. digitata and both type and freshly collected material of S. cervicornis. The conclusion is strengthened by the discovery of a new species, Sollasella moretonensis n.sp. collected in North Australia (primarily in the northeastern coast, but also an isolated record from the northwestern Australian coast), which possesses in addition to the characteristic surface pattern and skeletal structure, genuine echinating acanthostyles. The redefined genus Sollasella shares axial / extra-axial arrangement of the skeleton, special surface brushes of oxeas surrounding a single protruding style, and vestigial occurrence of acanthostyles with many Raspailia s.l. Nevertheless, it is retained as a separate genus, on account of its peculiar polygonal arrangement of surface pores. The distribution of the genus is disjunctive including both (southeast, northeast and northwest) Australian and Western Indian Ocean localities, but so far no intermediate records. Based on this morphological evidence, it is proposed – pending publication of corroborating molecular evidence to be presented in a follow-up study – to reassign Sollasella and the family Sollasellidae to the poecilosclerid family Raspailiidae

    Constraints on the tectonic and landscape evolution of the Bhutan Himalaya from thermochronometry

    Get PDF
    The observed geomorphology and calculated thermal histories of the Bhutan Himalaya provide an excellent platform to test ideas regarding the influence of tectonics and climate on the evolution of a convergentmountain range. However, little consensus has been reached regarding the late Cenozoic history of the Bhutan Himalaya. Some researchers have argued that observed geologic relationships show slowing deformation rates, such that the range is decaying from a geomorphic perspective, while others see the range as growing and steepening. We suggest that a better understanding is possible through the integrated interpretation of geomorphic and thermochronometric data from the comparison of predictions from models of landscape evolution and thermal-kinematic models of orogenic systems. New thermochronometric data throughout Bhutan aremost consistent with a significant decrease in erosion rates, from2 to 3 km/Ma down to 0.1–0.3 km/Ma, around 6–4Ma. We interpret this pattern as a decrease in rock uplift rates due to the activation of contractional structures of the Shillong Plateau, an uplifted region approximately 100 km south of Bhutan. However, low-relief, fluvial landscapes throughout the Bhutanese hinterland record a late pulse of surface uplift likely due to a recent increase in rock uplift rates. Constraints from our youngest thermochronometers suggest that this increase in rock uplift and surface uplift occurred within the last 1.75Ma. These results imply that the dynamics of the Bhutan Himalaya and Shillong Plateau have been linked during the late Cenozoic, with structural elements of both regions active in variable ways and times over that interval

    Optimizing the Distribution of Leg Muscles for Vertical Jumping.

    Get PDF
    A goal of biomechanics and motor control is to understand the design of the human musculoskeletal system. Here we investigated human functional morphology by making predictions about the muscle volume distribution that is optimal for a specific motor task. We examined a well-studied and relatively simple human movement, vertical jumping. We investigated how high a human could jump if muscle volume were optimized for jumping, and determined how the optimal parameters improve performance. We used a four-link inverted pendulum model of human vertical jumping actuated by Hill-type muscles, that well-approximates skilled human performance. We optimized muscle volume by allowing the cross-sectional area and muscle fiber optimum length to be changed for each muscle, while maintaining constant total muscle volume. We observed, perhaps surprisingly, that the reference model, based on human anthropometric data, is relatively good for vertical jumping; it achieves 90% of the jump height predicted by a model with muscles designed specifically for jumping. Alteration of cross-sectional areas-which determine the maximum force deliverable by the muscles-constitutes the majority of improvement to jump height. The optimal distribution results in large vastus, gastrocnemius and hamstrings muscles that deliver more work, while producing a kinematic pattern essentially identical to the reference model. Work output is increased by removing muscle from rectus femoris, which cannot do work on the skeleton given its moment arm at the hip and the joint excursions during push-off. The gluteus composes a disproportionate amount of muscle volume and jump height is improved by moving it to other muscles. This approach represents a way to test hypotheses about optimal human functional morphology. Future studies may extend this approach to address other morphological questions in ethological tasks such as locomotion, and feature other sets of parameters such as properties of the skeletal segments
    • …
    corecore