5 research outputs found

    Children balance theories and evidence in exploration, explanation, and learning

    Get PDF
    We look at the effect of evidence and prior beliefs on exploration, explanation and learning. In Experiment 1, we tested children both with and without differential prior beliefs about balance relationships (Center Theorists, mean: 82 months; Mass Theorists, mean: 89 months; No Theory children, mean: 62 months). Center and Mass Theory children who observed identical evidence explored the block differently depending on their beliefs. When the block was balanced at its geometric center (belief-violating to a Mass Theorist, but belief-consistent to a Center Theorist), Mass Theory children explored the block more, and Center Theory children showed the standard novelty preference; when the block was balanced at the center of mass, the pattern of results reversed. The No Theory children showed a novelty preference regardless of evidence. In Experiments 2 and 3, we follow-up on these findings, showing that both Mass and Center Theorists selectively and differentially appeal to auxiliary variables (e.g., a magnet) to explain evidence only when their beliefs are violated. We also show that children use the data to revise their predictions in the absence of the explanatory auxiliary variable but not in its presence. Taken together, these results suggest that children’s learning is at once conservative and flexible; children integrate evidence, prior beliefs, and competing causal hypotheses in their exploration, explanation, and learning.American Psychological Foundation (Elizabeth Munsterberg Koppitz Fellowship)James S. McDonnell Foundation (Collaborative Interdisciplinary Grant on Causal Reasoning)National Science Foundation (U.S.) (NSF Faculty Early Career Development Award)Templeton Foundation (Award

    Parental Pre-knowledge Enhances Guidance During Inquiry-Based Family Learning in a Museum Context:An Individual Differences Perspective

    Get PDF
    Effective interaction and inquiry are an essential source for children’s learning about science in an informal context. This study investigated the effect of parental preknowledge on parent–child interactions (manipulations, parent talk, and child talk) during an inquiry activity in NEMO Science Museum in Amsterdam. The sample included 105 parent–child dyads (mean children’s age = 10.0 years). Half of the couples were randomly assigned to the experimental group in which, without the child’s knowledge, the parent was shown the task’s solution prior to the inquiry activity. Results show that parental pre-knowledge affected the way parents interacted and inquired with their child. Compared to parents without pre-knowledge, parents with pre-knowledge inquired longer, posed more open-ended wh-questions and closed questions, and less often interpreted results. Children of parents with pre-knowledge more often described evidence and interpreted results, more often manipulated alone, and solved the task more accurately. These results indicate that parental pre-knowledge brings about parents’ scaffolding behavior. In addition, it was studied how individual differences of parents and children relate to parent–child interaction. Results show that children’s self-reported inquiry attitude was related to their conversation during inquiry, such that they asked fewer closed questions and more open-ended questions. Children’s gender affected the cooperation between parent and child, parents more often manipulated together with boys than with girls, and girls more often manipulated alone. Fathers with pre-knowledge, but not mothers, let their child manipulate more by oneself than fathers without pre-knowledge. This study shows that more knowledge about an exhibit improves a parent’s scaffolding behavior in a science museum. Results are discussed in the context of museum practice
    corecore