644 research outputs found

    The skeletons of free distributive lattices

    Get PDF
    AbstractThe skeletons of free distributive lattices are studied by methods of formal concept analysis; in particular, a specific closure system of sublattices is elaborated to clarify the structure of the skeletons. Up to five generators, the skeletons are completely described

    Outcome measurement instruments for peripheral vascular malformations and an assessment of the measurement properties: a systematic review

    Get PDF
    © 2019, The Author(s). Purpose: The Outcome measures for vascular malformation (OVAMA) group reached consensus on the core outcome domains for the core outcome set (COS) for peripheral vascular malformations (venous, lymphatic and arteriovenous malformations). However, it is unclear which instruments should be used to measure these domains. Therefore, our aims were to identify all outcome measurement instruments available for vascular malformations, and to evaluate their measurement properties. Methods: With the first literature search, we identified outcomes and instruments previously used in prospective studies on vascular malformations. A second search yielded studies on measurement properties of patient- and physician-reported instruments that were either developed for vascular malformations, or used in prospective studies. If the latter instruments were not specifically validated for vascular malformations, we performed a third search for studies on measurement properties in clinically similar diseases (vascular or lymphatic diseases and benign tumors). We assessed the methodological quality of these studies following the Consensus-based Standards for the selection of health Measurement Instruments methodology, and evaluated the quality of the measurement properties. Results: The first search yielded 27 studies, none using disease-specific instruments. The second and third search included 22 development and/or validation studies, concerning six instruments. Only the Lymphatic Malformation Function Instrument was developed specifically for vascular malformations. Other instruments were generic QoL instruments developed and/or partly validated for clinically similar diseases. Conclusions: Additional research on measurement properties is needed to assess which instruments may be included in the COS. This review informs the instrument selection and/or the development of new instruments. Systematic review registration: PROSPERO, 42017056242

    Guidelines for limiting exposure to electromagnetic fields (100 kHz to 300 GHz)

    Get PDF
    Radiofrequency electromagnetic fields (EMFs) are used to enable a number of modern devices, including mobile telecommunications infrastructure and phones, Wi-Fi, and Bluetooth. As radiofrequency EMFs at sufficiently high power levels can adversely affect health, ICNIRP published Guidelines in 1998 for human exposure to time-varying EMFs up to 300 GHz, which included the radiofrequency EMF spectrum. Since that time, there has been a considerable body of science further addressing the relation between radiofrequency EMFs and adverse health outcomes, as well as significant developments in the technologies that use radiofrequency EMFs. Accordingly, ICNIRP has updated the radiofrequency EMF part of the 1998 Guidelines. This document presents these revised Guidelines, which provide protection for humans from exposure to EMFs from 100 kHz to 300 GHz

    Recent Research on EMF and Health Risk, Twelfth report from SSM's Scientific Council on Electromagnetic Fields, 2017

    Get PDF
    Background: The Swedish Radiation Safety Authority's (SSM) Scientific Council on Electromagnetic Fields monitors current research on potential health risks with a correlation to exposure to electromagnetic fields, and provides the Authority with advice on assessing possible health risks. The Council gives guidance when the Authority must give an opinion on policy matters when scientific testing is necessary. The Council is required to submit a written report each year on the current research and knowledge situation. Objective: The report has the objective of covering the previous year's research in the area of electromagnetic fields (EMF). The report gives the Swedish Radiation Safety Authority an overview and provides an important basis for risk assessment. Results: The present annual report is the twelfth in this series and covers studies published from October 2015 up to and including March 2017. The report covers different areas of EMF (static, low frequency, intermediate, and radio frequency fields) and different types of studies such as biological, human and epidemiological studies. No new health risks have been identified. Whether mobile phone use causes brain tumours or not was mainly addressed using time trends studies in the last two years. The results were not entirely consistent but mainly point towards a lack of association. Some cell and animal studies indicate that EMF exposure may cause oxidative stress even at low exposure levels. It is unclear what relevance this may have when it comes to direct health effects in humans. A striking result was that some studies showed a stronger association between memory functions and radio wave exposure than other usage variables. The annual report also has a section covering other relevant scientific reports published recently

    Gaps in knowledge relevant to the “guidelines for limiting exposure to time-varying electric and magnetic fields (1 Hz-100 kHz)"

    Get PDF
    Sources of low-frequency fields are widely found in modern society. All wires or devices carrying or using electricity generate extremely low frequency (ELF) electric fields (EFs) and magnetic fields (MFs), but they decline rapidly with distance to the source. High magnetic flux densities are usually found in the vicinity of power lines and close to equipment using strong electrical currents, but can also be found in buildings with unbalanced return currents, or indoor transformer stations. For decades, epidemiological as well as experimental studies have addressed possible health effects of exposure to ELF-MFs. The main goal of ICNIRP is to protect people and the environment from detrimental exposure to all forms of non-ionizing radiation (NIR). To this end, ICNIRP provides advice and guidance by developing and disseminating exposure guidelines based on the available scientific research. Research in the low-frequency range began more than 40 years ago, and there is now a large body of literature available on which ICNIRP set its protection guidelines. A review of the literature has been carried out to identify possible relevant knowledge gaps, and the aim of this statement is to describe data gaps in research that would, if addressed, assist ICNIRP in further developing guidelines and setting revised recommendations on limiting exposure to electric and magnetic fields. It is articulated in two parts: the main document, which reviews the science related to LF data gaps, and the annex, which explains the methodology used to identify the data gaps

    Principles for non-ionizing radiation protection

    Get PDF
    In this statement, the International Commission on Non-Ionizing Radiation Protection (ICNIRP) presents its principles for protection against adverse health effects from exposure to non-ionizing radiation. These are based upon the principles for protection against ionizing radiation of the International Commission for Radiological Protection (ICRP) in order to come to a comprehensive and consistent system of protection throughout the entire electromagnetic spectrum. The statement further contains information about ICNIRP and the processes it uses in setting exposure guidelines

    Light-emitting diodes (LEDS): Implications for safety

    Get PDF
    Since the original ICNIRP Statement was published in 2000, there have been significant improvements in the efficiency and radiance (i.e., optical radiation emission) of LEDs. The most important improvement is the development of 'white' LEDs that can be used as general lighting sources, which are more efficient than traditional lighting sources. LEDs emitting in the ultraviolet wavelength region have also become available and have made their way into consumer products. All these changes have led to a rise in concern for the safety of the optical radiation emissions from LEDs. Several in vitro and animal studies have been conducted, which indicate that blue and white LEDs can potentially cause retinal cell damage under high irradiance and lengthy exposure conditions. However, these studies cannot be directly extrapolated to normal exposure conditions for humans, and equivalent effects can also be caused by the optical radiation from other light sources under extreme exposure conditions. Acute damage to the human retina from typical exposure to blue or white LEDs has not been demonstrated. Concern for potential long-term effects, e.g. age-related macular degeneration (AMD), remains based on epidemiological studies indicating a link between high levels of exposure to sunlight and AMD. When evaluating the optical radiation safety of LEDs, it has now been established that published safety standards for lamps, not lasers, should be applied. Thus far, the only clear, acute adverse health effects from LEDs are those due to temporal light modulation (including flicker). Glare can also create visual disturbances when LED light fixtures are not properly designed. Further research is needed on potential health effects from short- and long-term exposure to new and emerging lighting technologies
    • …
    corecore