187 research outputs found

    Data-driven meal events detection using blood glucose response patterns

    Get PDF
    BackgroundIn the Diabetes domain, events such as meals and exercises play an important role in the disease management. For that, many studies focus on automatic meal detection, specially as part of the so-called artificial β-cell systems. Meals are associated to blood glucose (BG) variations, however such variations are not peculiar to meals, it mostly comes as a combination of external factors. Thus, general approaches such as the ones focused on glucose signal rate of change are not enough to detect personalized influence of such factors. By using a data-driven individualized approach for meal detection, our method is able to fit real data, detecting personalized meal responses even when such external factors are implicitly present.MethodsThe method is split into model training and selection. In the training phase, we start observing meal responses for each individual, and identifying personalized patterns. Occurrences of such patterns are searched over the BG signal, evaluating the similarity of each pattern to each possible signal subsequence. The most similar occurrences are then selected as possible meal event candidates. For that, we include steps for excluding less relevant neighbors per pattern, and grouping close occurrences in time globally. Each candidate is represented by a set of time and response signal related qualitative variables. These variables are used as input features for different binary classifiers in order to learn to classify a candidate as MEAL or NON-MEAL. In the model selection phase, we compare all trained classifiers to select the one that performs better with the data of each individual.ResultsThe results show that the method is able to detect daily meals, providing a result with a balanced proportion between detected meals and false alarms. The analysis on multiple patients indicate that the approach achieves good outcomes when there is enough reliable training data, as this is reflected on the testing results.ConclusionsThe approach aims at personalizing the meal detection task by relying solely on data. The premise is that a model trained with data that contains the implicit influence of external factors is able to recognize the nuances of the individual that generated the data. Besides, the approach can also be used to improve data quality by detecting meals, opening opportunities to possible applications such as detecting and reminding users of missing or wrongly informed meal events

    Parameter adaptations during phenotype transitions in progressive diseases

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The study of phenotype transitions is important to understand progressive diseases, e.g., diabetes mellitus, metabolic syndrome, and cardiovascular diseases. A challenge remains to explain phenotype transitions in terms of adaptations in molecular components and interactions in underlying biological systems.</p> <p>Results</p> <p>Here, mathematical modeling is used to describe the different phenotypes by integrating experimental data on metabolic pools and fluxes. Subsequently, trajectories of parameter adaptations are identified that are essential for the phenotypical changes. These changes in parameters reflect progressive adaptations at the transcriptome and proteome level, which occur at larger timescales. The approach was employed to study the metabolic processes underlying liver X receptor induced hepatic steatosis. Model analysis predicts which molecular processes adapt in time after pharmacological activation of the liver X receptor. Our results show that hepatic triglyceride fluxes are increased and triglycerides are especially stored in cytosolic fractions, rather than in endoplasmic reticulum fractions. Furthermore, the model reveals several possible scenarios for adaptations in cholesterol metabolism. According to the analysis, the additional quantification of one cholesterol flux is sufficient to exclude many of these hypotheses.</p> <p>Conclusions</p> <p>We propose a generic computational approach to analyze biological systems evolving through various phenotypes and to predict which molecular processes are responsible for the transition. For the case of liver X receptor induced hepatic steatosis the novel approach yields information about the redistribution of fluxes and pools of triglycerides and cholesterols that was not directly apparent from the experimental data. Model analysis provides guidance which specific molecular processes to study in more detail to obtain further understanding of the underlying biological system.</p

    Ekstrak Virgin Coconut Oil Sebagai Sumber Pangan Fungsional

    Get PDF
    Virgin Coconut Oil (VCO) merupakan salah satu jenis minyak nabati yang dapat bermanfaat dari aspek medis dan nutrisi karena dapat mencegah dan membantu mengobati penyakit tertentu serta dapat mempermudah proses pencernaan makanan dan penyerapan gizi. VCO dapat bertindak sebagai antioksidan dan antifotooksidan yang disebabkan oleh kandungan komponen minor (mikronutrien). Tujuan penelitian ini adalah mengekstrak komponen minor VCO menjadi produk untuk pangan fungsional yang mampu berperan sebagai antioksidan dan mengetahui peran VCO sebagai antiradikal bebas secara in vitro. Penelitian ini menggunakan metode eksperimental dengan 3 tahap yaitu: 1. Ekstraksi VCO menggunakan pelarut etanol dan metanol, 2. Pengujian penangkapan radikal bebas ekstrak VCO secara in vitro dengan metode 1,1-difenil-2-pikrilhidrazil (DPPH), 3. Identifikasi dan pengujian komponen kimia pada ekstrak VCO, identifikasi dan pengujian komponen minor pada ekstrak VCO dengan menggunakan High Performance Liquid Chromatography (HPLC). Hasil penelitian ini menunjukkan bahwa rendemen ekstrak VCO semakin tinggi dengan semakin tingginya persentase pelarut, ekstraksi dengan menggunakan etanol menghasilkan rendemen ekstrak yang lebih tinggi dibanding dengan menggunakan metanol. Aktivitas antioksidan dan kandungan total tokoferol dari ekstrak VCO semakin tinggi dengan semakin tingginya persentase pelarut yang digunakan. Salah satu senyawa tokoferol yang terdapat dalam VCO adalah -tokoferol. Berdasarkan analisa statistik menunjukkan bahwa etanol dan metanol menghasilkan sifat kimia ekstrak yang relatif sama, sehingga dapat direkomendasikan bahwa untuk mengekstraksi komponen minor dari VCO dapat menggunakan etanol karena di samping aman dari aspek kesehatan juga dapat menghasilkan rendemen ekstrak yang lebih tinggi

    In Silico Analysis Identifies Intestinal Transit as a Key Determinant of Systemic Bile Acid Metabolism

    Get PDF
    Bile acids fulfill a variety of metabolic functions including regulation of glucose and lipid metabolism. Since changes of bile acid metabolism accompany obesity, Type 2 Diabetes Mellitus and bariatric surgery, there is great interest in their role in metabolic health. Here, we developed a mathematical model of systemic bile acid metabolism, and subsequently performed in silico analyses to gain quantitative insight into the factors determining plasma bile acid measurements. Intestinal transit was found to have a surprisingly central role in plasma bile acid appearance, as was evidenced by both the necessity of detailed intestinal transit functions for a physiological description of bile acid metabolism as well as the importance of the intestinal transit parameters in determining plasma measurements. The central role of intestinal transit is further highlighted by the dependency of the early phase of the dynamic response of plasma bile acids after a meal to intestinal propulsion

    Computational modelling of energy balance in individuals with Metabolic Syndrome

    Get PDF
    Abstract Background A positive energy balance is considered to be the primary cause of the development of obesity-related diseases. Treatment often consists of a combination of reducing energy intake and increasing energy expenditure. Here we use an existing computational modelling framework describing the long-term development of Metabolic Syndrome (MetS) in APOE3L.CETP mice fed a high-fat diet containing cholesterol with a human-like metabolic system. This model was used to analyze energy expenditure and energy balance in a large set of individual model realizations. Results We developed and applied a strategy to select specific individual models for a detailed analysis of heterogeneity in energy metabolism. Models were stratified based on energy expenditure. A substantial surplus of energy was found to be present during MetS development, which explains the weight gain during MetS development. In the majority of the models, energy was mainly expended in the peripheral tissues, but also distinctly different subgroups were identified. In silico perturbation of the system to induce increased peripheral energy expenditure implied changes in lipid metabolism, but not in carbohydrate metabolism. In silico analysis provided predictions for which individual models increase of peripheral energy expenditure would be an effective treatment. Conclusion The computational analysis confirmed that the energy imbalance plays an important role in the development of obesity. Furthermore, the model is capable to predict whether an increase in peripheral energy expenditure – for instance by cold exposure to activate brown adipose tissue (BAT) – could resolve MetS symptoms

    An In Vivo Magnetic Resonance Spectroscopy Study of the Effects of Caloric and Non-Caloric Sweeteners on Liver Lipid Metabolism in Rats

    Get PDF
    We aimed to elucidate the effects of caloric and non-caloric sweeteners on liver lipid metabolism in rats using in vivo magnetic resonance spectroscopy (MRS) and to determine their roles in the development of liver steatosis. Wistar rats received normal chow and either normal drinking water, or solutions containing 13% (w/v) glucose, 13% fructose, or 0.4% aspartame. After 7 weeks, in vivo hepatic dietary lipid uptake and de novo lipogenesis were assessed with proton-observed, carbon-13-edited MRS combined with C-13-labeled lipids and C-13-labeled glucose, respectively. The molecular basis of alterations in hepatic liver metabolism was analyzed in detail ex vivo using immunoblotting and targeted quantitative proteomics. Both glucose and fructose feeding increased adiposity, but only fructose induced hepatic lipid accumulation. In vivo MRS showed that this was not caused by increased hepatic uptake of dietary lipids, but could be attributed to an increase in de novo lipogenesis. Stimulation of lipogenesis by fructose was confirmed by a strong upregulation of lipogenic enzymes, which was more potent than with glucose. The non-caloric sweetener aspartame did not significantly affect liver lipid content or metabolism. In conclusion, liquid fructose more severely affected liver lipid metabolism in rats than glucose, while aspartame had no effect

    Model-based data analysis of individual human postprandial plasma bile acid responses indicates a major role for the gallbladder and intestine

    Get PDF
    BACKGROUND: Bile acids are multifaceted metabolic compounds that signal to cholesterol, glucose, and lipid homeostasis via receptors like the Farnesoid X Receptor (FXR) and transmembrane Takeda G protein-coupled receptor 5 (TGR5). The postprandial increase in plasma bile acid concentrations is therefore a potential metabolic signal. However, this postprandial response has a high interindividual variability. Such variability may affect bile acid receptor activation. METHODS: In this study, we analyzed the inter- and intraindividual variability of fasting and postprandial bile acid concentrations during three identical meals on separate days in eight healthy lean male subjects using a statistical and mathematical approach. MAIN FINDINGS: The postprandial bile acid responses exhibited large interindividual and intraindividual variability. The individual mathematical models, which represent the enterohepatic circulation of bile acids in each subject, suggest that interindividual variability results from quantitative and qualitative differences of distal active uptake, colon transit, and microbial bile acid transformation. Conversely, intraindividual variations in gallbladder kinetics can explain intraindividual differences in the postprandial responses. CONCLUSIONS: We conclude that there is considerable inter- and intraindividual variation in postprandial plasma bile acid levels. The presented personalized approach is a promising tool to identify unique characteristics of underlying physiological processes and can be applied to investigate bile acid metabolism in pathophysiological conditions

    Altered bile acid kinetics contribute to postprandial hypoglycaemia after Roux-en-Y gastric bypass surgery

    Get PDF
    Background/objectives: Bile acids (BA) act as detergents in intestinal fat absorption and as modulators of metabolic processes via activation of receptors such as FXR and TGR5. Elevated plasma BA as well as increased intestinal BA signalling to promote GLP-1 release have been implicated in beneficial health effects of Roux-en-Y gastric bypass surgery (RYGB). Whether BA also contribute to the postprandial hypoglycaemia that is frequently observed post-RYGB is unknown. Methods: Plasma BA, fibroblast growth factor 19 (FGF19), 7α-hydroxy-4-cholesten-3-one (C4), GLP-1, insulin and glucose levels were determined during 3.5 h mixed-meal tolerance tests (MMTT) in subjects after RYGB, either with (RYGB, n = 11) or without a functioning gallbladder due to cholecystectomy (RYGB-CC, n = 11). Basal values were compared to those of age, BMI and sex-matched obese controls without RYGB (n = 22). Results: Fasting BA as well as FGF19 levels were elevated in RYGB and RYGB-CC subjects compared to non-bariatric controls, without significant differences between RYGB and RYGB-CC. Postprandial hypoglycaemia was observed in 8/11 RYGB-CC and only in 3/11 RYGB. Subjects who developed hypoglycaemia showed higher postprandial BA levels coinciding with augmented GLP-1 and insulin responses during the MMTT. The nadir of plasma glucose concentrations after meals showed a negative relationship with postprandial BA peaks. Plasma C4 was lower during MMTT in subjects experiencing hypoglycaemia, indicating lower hepatic BA synthesis. Computer simulations revealed that altered intestinal transit underlies the occurrence of exaggerated postprandial BA responses in hypoglycaemic subjects. Conclusion: Altered BA kinetics upon ingestion of a meal, as frequently observed in RYGB-CC subjects, appear to contribute to postprandial hypoglycaemia by stimulating intestinal GLP-1 release
    • …
    corecore