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Abstract
Purpose The focus of bariatric surgery is reduction of weight, reflected in body mass index (BMI). However, the resolution of
comorbidity is a second important outcome indicator. The degree of comorbidity is hard to quantify objectively as comorbidities
develop gradually and are interdependent. Multiple scoring systems quantifying comorbidity exist but they lack continuity and
objectivity. In analogy with BMI as index for weight, the Metabolic Health Index (MHI) is developed as objective quantification
of metabolic health status. Laboratory data were used as comorbidities affect biomarkers. Conversely, laboratory data can be used
as objectively obtained variables to describe comorbidity.
Methods Laboratory data were collected and crosschecked by national quality registry entries. Machine learning was applied to
develop an ordinal logistic regression model, using 4 clinical and 32 laboratory input variables. The output was mathematically
transformed into a continuous score for intuitive interpretation, ranging from 1 to 6 (MHI).
Results In total, 4778 data records of 1595 patients were used. The degree of comorbidity is best described by age at phlebotomy,
estimated Glomerular Filtration Rate (eGFR), and concentrations of glycated hemoglobin (HbA1c), triglycerides, and potassium.
The model is independent of day of sampling and type of surgery. Mean MHI was significantly different between patient
subgroups with increasing number of comorbidities.
Conclusion The MHI reflects severity of comorbidity, enabling objective assessment of a bariatric patient’s metabolic health
state, regardless day of sampling and surgery type. Next to weight-focused outcome measures like %TWL, the MHI can serve as
outcome measure for metabolic health.

Keywords Bariatric surgery . METABOLIC SURGERY . Hypertension . Diabetes . Dyslipidemia . Metabolic syndrome .

Machine learning . Biomarkers . Value based health care . Outcomemeasure

Introduction

More than 10% of the worldwide population is considered
obese, having a body mass index (BMI) ≥ 30 kg/m2 [1].
Obesity is associated with comorbidities like type 2 diabetes
mellitus (T2D), hypertension, and dyslipidemia, which are
responsible for > 2.5 million deaths per year worldwide [2,
3]. The only treatment modality with proven long-term effect
is bariatric surgery [2]. However, historically, only patients
with morbid obesity (BMI > 40 kg/m2) are offered bariatric
surgery. Lately, also patients with a BMI between 35 and 40
kg/m2 with clinically relevant comorbidities like T2D, hyper-
tension, or dyslipidemia have become eligible for bariatric
surgery. This new indication for surgery is most often referred
to as metabolic surgery, which focuses on improving obesity-
related comorbidities next to weight loss [4–8]. European
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guidelines already suggest metabolic surgery for patients with
dysregulated T2D and BMI between 30 and 35 kg/m2 to sup-
port T2D improvement or remission [8].

Nowadays, the concept of value-based health care is be-
coming increasingly important and the outcome of provided
care should be weighed against the costs.Weight loss is a clear
outcome measure for bariatric surgery. Weight loss can be
objectively quantified by multiple measures like BMI, per-
centage of total weight loss (%TWL), or percentage of excess
weight loss (%EWL) [4]. Conversely, improving obesity-
related comorbidity is difficult to measure objectively.
Comorbidities like T2D, hypertension, and dyslipidemia de-
velop gradually and are interdependent. Together they reflect
the continuum of the metabolic syndrome (MetS) or syndrome
X. MetS is a widely accepted concept identifying the centrally
obese patient with increased risk for cardiovascular disease
and diabetes [6, 9–15]. Therefore, it is important to assess
the comorbidities T2D, hypertension, and dyslipidemia.
There are criteria to diagnose each comorbidity. However,
objectively expressing improvement of comorbidity is more
difficult [8]. In clinical practice, this is often left to the physi-
cian’s assessment. Current criteria for improvement of comor-
bidity are dichotomous and do not cover minor steps towards
remission. For example, a diabetic patient that went from in-
sulin injections before surgery to oral medication only after
surgery is not considered as “partial remission” according to
the criteria in the European guidelines [8]. However, this
change in pharmacotherapy can still be seen as an improve-
ment. Ideally, an outcome measure should absorb these minor
improvements of comorbidity. A measure on a continuous
scale that is also derived from objective input would be pre-
ferred here.

For single comorbidities, quantitative measures are already
available [11, 13–15]. However, half of the comorbid bariatric
patients in our population had not one but multiple comorbid-
ities (multimorbidity). In addition, comorbidities interact, and
therefore, their cumulative impact needs to be quantified to-
gether to assess their overall impact. Already, multiple scoring
systems for the assessment of MetS severity have been devel-
oped, like the Edmonton Obesity Staging System (EOSS) [16,
17]. The EOSS relies on definitions of risk or of comorbid
conditions and on the interpretation of the terms like “mild,”
“moderate,” or “severe.” The nature of MetS as a continuous
spectrum of disease is by the EOSS divided in five separate
classes [18, 19]. Examples of continuous MetS scores are the
continuous metabolic syndrome risk score (cMSy), the simple
metabolic syndrome (siMS) score, and the metabolic syn-
drome severity score (MetSSS), all acknowledging the MetS
continuum [20–22]. The MetS scores use input variables sim-
ilar to the diagnosis criteria for MetS, i.e., triglyceride level,
high-density lipoprotein (HDL) cholesterol level, glucose

level, waist circumference, and both systolic and diastolic
blood pressure [10, 14, 15]. So, next to objective laboratory
test results, these MetS severity scores also rely on input data
that are susceptible to interobserver variation due to, for ex-
ample, the manual way in which they are normally obtained.

In search for the ideal performance indicator, an outcome
measure is needed that is both continuous and objective.
These current MetS scores do not meet up to both criteria. A
new measure must describe comorbidity-related metabolic
health status by integrating the impact of multimorbidity and
being observer-independent. Therefore, the aim of this study
is to develop such an outcome measure, called the Metabolic
Health Index (MHI). As comorbidities affect biomarkers, we
hypothesized that biomarkers would be ideal to describe the
severity of comorbidities like T2D, hypertension, and dyslip-
idemia. A data-driven approach was chosen to mine extensive
laboratory data from our high-volume bariatric center. The
laboratory data consist of biomarkers reflecting hematological
status, kidney function, liver function, thyroid function, glu-
cose metabolism, lipid profile, and inflammation parameters.
All variables were measured both before and several times
after surgery. Machine learning was applied, offering the op-
portunity to reveal otherwise unrecognized patterns in the data
describing the overall impact of the multiple comorbidities.
This approach seeks to develop an easily interpretable model
based on objective input. The output, called MHI, should be
numeric and continuous. Similar to the BMI describing a pa-
tient’s weight status, the MHI could help in the objective as-
sessment of comorbidity in bariatric patients summarizing the
metabolic health burden due to comorbidities T2D, hyperten-
sion, and dyslipidemia.

Methods

All patients provided informed consent on the use of their med-
ical data for scientific purposes. Statistic software R version
3.5.0 was used for data analysis and model building [23, 24].

Data

Comprehensive laboratory data were collected from patients
who underwent primary laparoscopic sleeve gastrectomy
(SG) or Roux-and-Y gastric bypass (LRYGB) surgery be-
tween January 2012 and January 2015 at the Catharina
Hospital obesity center (Eindhoven, The Netherlands).
Dutch guidelines were followed for mandatory screening
and follow-up program. All patients periodically visited the
outpatient clinic and had blood drawn for laboratory workup
(at any time of the day). The variables included in the labora-
tory workup are hemoglobin, hematocrit, erythrocytes, mean
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corpuscular hemoglobin, mean corpuscular volume, thrombo-
cytes, leukocytes (all XE-5000, Sysmex); bilirubin, aspartate
aminotransferase (AST), alanine aminotransferase (ALT), lac-
tate dehydrogenase, alkaline phosphatase, gamma-glutamyl
transferase, urea, creatinine, potassium, sodium, phosphate,
albumin, C-reactive protein, cholesterol (total), high-density
lipoprotein cholesterol, triglycerides, glucose, parathormone,
ferritin, folic acid (all Cobas, Roche DX); prothrombin time
(international normalized ratio (INR); Stago, STA-R MAX);
and hemoglobin A1c (HbA1C; Tosoh G8, Sysmex).
Additional calculated variables were AST/ALT ratio, choles-
terol/HDL-ratio, estimated glomerular filtration rate (eGFR,
using Chronic Kidney Disease Epidemiology Collaboration
(CKD-EPI) formula, replacing creatinine as input variable),
and albumin-corrected calcium (corrected calcium (mmol/L)
= total calcium (mmol/L) + 0.02 × (40 − albumin (g/L)). This
resulted in 32 biomarkers being included for modeling. In
addition, data on patient’s gender, age at phlebotomy, BMI,
applied surgical technique, and date of surgery were collected
from the hospital’s Electronic Medical Records (EMR). The
dates were categorized into periods with respect to surgery,
i.e., 3 months before surgery or 6, 12, 24 months after surgery.
Laboratory workups performed at 3 months before surgery
and at 6, 12 and 24 months after surgery were included. This
resulted in 34 variables for modeling, i.e., all 32 biomarkers,
gender, and age. The remaining variables “BMI,” “period,”
and “type of surgery” were only used for sub-analyses.

The laboratory data were merged with bariatric national
quality registry entries extracted from the Dutch Audit for
Treatment of Obesity (DATO) [25]. The DATO entries includ-
ed data on the presence or absence of comorbidities T2D,
hypertension, and dyslipidemia, both before and after surgery
(see Supplemental Materials, describing used criteria). These
data were collected during periodic clinical visits, where the
physician or nurse practitioner assessed comorbidity and con-
sidered as current “gold standard” method. An ordinal output
variable was defined by adding the three binary DATO labels
for each comorbidity and stating comorbidity presence as
“none,” “one,” or “multiple.” It is assumed here that patients
having multiple comorbidities are less healthy compared with
those with fewer or no comorbidities.

Upon merging the data, the maximal time window
allowed between a laboratory workup and a DATO entry
was set at 90 days. For each patient and for each period, the
pair of laboratory and DATO data (further referred to as
“data record”) having the smallest number of days between
them was chosen as record for modeling. Laboratory
workups and DATO entries that did not suffice the merging
criterion of 90 days were excluded. Incomplete data re-
cords (e.g., missing biomarker data or missing comorbidity
labels) were excluded. In addition, patients without pre-

surgical data were excluded, as effect of surgery could then
not be assessed.

Model Building

The preferred modeling technique was ordinal logistic regres-
sion because it allows regression of an ordinal outcome vari-
able on both continuous and categorical input variables. Of the
available logistic regression models, the penalized extended
continuation ratio model was used. This model is based on
conditional probabilities and fits ordinal responses when sub-
jects have to “pass through” one category to get to the next
[23, 26, 27].

Internal model validity was evaluated by applying 10-fold
cross-validation. Cross-validation is a common method to as-
sess the generalization power of a model. The dataset was
randomly split in 10 equally sized, representative disjoint sub-
sets. In each subset, the distribution of comorbidities was sim-
ilar to the total dataset. A model was built on a merged set of 9
of the 10 subsets. The remaining subset was used to evaluate
the model’s performance. By building 10 models, one gets a
better estimation of the quality of the model, allowing for
calculations of the error on the model’s output.

In the cross-validation, each model was initially built using
all 34 input variables (“full” model). A selection of variables
was made to reduce the number of input variables in the final
model and to eliminate variables that were of limited informa-
tive value to the outcome of the model. Here, Harrell’s “model
approximation” procedure was used [23]. Input variables were
removed from the “full” equation in a repetitive, step-wise
manner until the simplified linear predictor approximated the
linear predictor of the “full”model to a certain goodness of fit
(R2). The R2 was determined after the removal of each single
input variable. The simplification was stopped when an R2 of
0.95 was reached. This threshold for approximation was set at
0.95 to limit the number of variables being included in the
final model while maintaining the model’s discriminative
power (feature selection). The variables were thus selected
in a data-driven manner, not guided by medical domain
knowledge.

The outcome of the final model was a predicted probability
of having comorbidity. The assumption was that the predicted
probability corresponds to the patient’s metabolic health bur-
den. Because the model’s logistic function (S-curve) is not
linear, it is less intuitive to interpret. Therefore, the predicted
probability was mathematically transformed onto a linear
scale and recalculated into an intuitive, continuous score of
increasing metabolic health burden, the MHI. The final model
was also visualized in a nomogram for interpretation of the
effect size of the individual variables. In this nomogram, each
effect in the model was converted to a 0 to 100 scale. Points
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can be assigned to each variable depending on its obtained
value.

Model Evaluation

Model performance was assessed for discriminative power
using the area under the receiver operating characteristic
(ROC) curve (AUC). The prediction of comorbidity by the
model was compared with the categorical comorbidity labels
“none,” “one,” or “multiple.” Mean AUC was estimated by
averaging the AUC of each model developed in the 10-fold
cross-validation. Using the mean AUC and corresponding
variability around the mean, an estimate was provided of the
stability of the applied modeling technique. The distinctive
character of the MHI was also assessed by comparing the
MHI between different patient groups with respect to the num-
ber and type of comorbidity. After performing an ANOVA test
to assess overall difference in mean MHI, Tukey’s honest
significant difference test was used to compare mean MHI
between groups.

The robustness of the model was assessed by comparing
the MHI as calculated by the final model with the MHI cal-
culated by a model fitted on different subsets of the data, i.e.,
pre-surgery and post-surgery data (time dependency) or SG
and LRYGB data (procedure dependency).

Clinical Potential

%TWL is a common “weight-centric” outcomemeasure in the
assessment of the procedure’s performance. The MHI can be
used as “comorbidity-centric” outcome measure, allowing for
a second dimension in this same assessment. Therefore, the
study population was categorized into subgroups based on
%TWL andMHI reduction at 12 months after surgery. A clear
definition of “success” has not been uniformly defined [4].
Therefore, the 25th and 75th percentiles of both %TWL and
MHI reduction 12 months post-surgery were derived from the
study population and used to identify “poor” and “good” per-
formers, rather than defining “success” or “failure” based on
certain values for either %TWL or MHI. Thus, the study pop-
ulation was divided in subgroups “poor” performers (below
25th percentile), “average” performers (between 25th and
75th percentile), and “good” performers (above 75th percen-
tile) for both %TWL and MHI reduction after 12 months.

The MHI can also serve as an institutional performance
indicator to quantify the improvement in metabolic health
status by the care provided. This possible application of the
MHI on institutional level is shown by comparing mean MHI
before and after surgery. In addition, two subgroups were
identified having different pre-surgical conditions, determin-
ing their eligibility for surgery. The discrimination was made

based on the current two eligibility criteria, resulting in “bar-
iatric” patients (BMI ≥ 40 kg/m2) and “metabolic” patients
(BMI between 35 and 40 kg/m2 with at least one obesity-
related comorbidity like T2D, hypertension, or dyslipidemia)
[2, 4, 5].

Results

Exploratory Data Analysis

In the period between January 2012 and January 2015, 1739
patients underwent bariatric surgery at the Catharina hospital.
A minority of 144 patients (8%) were excluded because of
missing data, mostly due to missing data prior to surgery.
This was attributed to including patients based on surgery
date. In January 2012, a standard laboratory workup panel
was introduced at our bariatric center. Of patients having sur-
gery in the beginning of the inclusion period, no standard
laboratory workup data were available prior to surgery. Of
the remaining 1595 patients, 4778 complete sets of laboratory
workup data and DATO entries were obtained (data records).
Patient group sizes differed between the defined time points as
data were retrospectively collected over a cross-section of the
bariatric patient population (Table 1). Compared with the ini-
tial cohort, 694 patients (44%) were lost in follow-up after 24
months. These dropped-out patients did not differ significant-
ly in BMI or MHI at baseline from patients still available in
the 24-month follow-up, respectively, 44,1 kg/m2 versus 43,8

Table 1 Patient characteristics at different time points

Pre
(n = 1595)

6M
(n = 1263)

12M
(n = 1019)

24M
(n = 901)

Female 79% 80% 81% 81%

Age in years ± SD 41 ± 11.3 42 ± 11.2 43 ± 10.9 44 ± 10.8

Weight in kg ± SD 126 ± 20.8 92 ± 16.6 84 ± 15.8 86 ± 16.6

BMI in kg/m2 ± SD 44 ± 5.7 32 ± 4.9 29 ± 4.7 30 ± 5.1

GBP 48% 46% 48% 46%

SG 52% 54% 52% 54%

T2D 18% 13% 9% 7%

Hypertension 34% 26% 21% 15%

Dyslipidemia 17% 13% 12% 9%

No comorbidities 57% 66% 72% 79%

One comorbidity 24% 19% 18% 13%

Multiple comorbidities 20% 14% 10% 8%

Pre, pre-surgery; 6M, 6 months after surgery; 12M, 12 months after sur-
gery; 24M, 24 months after surgery; n, number of patients; BMI, body
mass index; LRYGB, laparoscopic Roux-en-Y gastric bypass; SG, sleeve
gastrectomy; T2D, type 2 diabetes mellitus
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kg/m2 andMHI 3,1 versus 3,1. Also, the ratio SG/LRYGB did
not differ significantly between both groups (51/49 vs 54/46).
Therefore, the drop-out was considered random.

The majority of the patients (80%) was female (Table 1). At
surgery, overall mean (± standard deviation (SD)) age was 41
(± 11) years and overall mean BMI was 44 (± 5.7) kg/m2.
Also, 43% (n = 692) of the patients had comorbidities, of
which 55% (n = 379) had one comorbidity, 28% (n = 197)
had two comorbidities, and 17% (n = 116) had all three co-
morbidities. With respect to the comorbidities of interest, 79%
(n = 549) had hypertension, 42% (n = 294) had T2D, and 40%
(n = 278) had dyslipidemia. Correlations between variables
were analyzed. Expected high correlations were observed,
e.g., between HbA1c and glucose (r = 0.78, Pearson), intro-
ducing multicollinearity in the logistic regression model. In
general, multicollinearity does not reduce the reliability of
the outcome of the model but affects the interpretation regard-
ing individual coefficients.

Model

The “full” model using all 34 input variables was simplified
by omitting variables one-by-one in a repetitive, step-wise
manner. This step-wise omission of variables was stopped
when the approximation of the “full” model by the simplified
model dropped to an R2 of 0.95. At this point in the data-
driven simplification of the “full” model, five variables
remained in the model: HbA1c, age, triglycerides, eGFR,
and potassium. Excluding one of these variables from the
model resulted in R2 < 0.95. These variables were thus con-
sidered of most informative value to the outcome of the mod-
el, i.e., describing metabolic health status. The linear predictor

(X β̂ ) of the final, simple logistic regression model was given
by the following equation:

X β̂ ¼ −3:64þ 1:00� 10−1 � HbA1c mmol=mol½ �� �

þ 5:98� 10−2 � age years½ �� �þ 4:49⋅10−1⋅triglycerides mmol=L½ �� �

− 8:23⋅10−1⋅potassium mmol=L½ �� �
− 1:06⋅10−2⋅eGFR ml=min=1:73m2

� �� �

ð1Þ

Equation (1) was visualized in a nomogram for ease of
interpretation (Supplemental Figure 1).

In order to compare different patient groups of increasing
metabolic health burden, the MHI was categorized in classes I
to VI (Table 2). Classes were defined using quintiles of pre-
dicted probability, with an additional category for the 95th
percentile. The mean level (± standard deviation, SD) of
HbA1c increased from 34 ± 3 mmol/mol in MHI class I to
74 ± 14 mmol/mol in MHI class VI (reference interval: 20–42
mmol/mol). Mean age went from 33.5 ± 8.1 years in MHI
class I to 54.1 ± 8.2 years in MHI class VI. The mean level
of triglycerides increased from 1.1 ± 0.5 mmol/L inMHI class
I to 3.4 ± 1.9 mmol/L in MHI class VI (target value: < 2.0
mmol/L). Mean potassium levels were similar in all MHI
classes, i.e., 4.0 ± 0.3 mmol/L (reference interval: 3.5–5.0
mmol/L). The mean eGFR decreased from 110 ± 13 mL/
min/1.73m2 to 88 ± 25 mL/min/1.73m2 (reference value: >
90 mL/min/1.73m2).

The distribution of patients with either none, one, two, or
three comorbidities was evaluated over the continuous range
of theMHI (Fig. 1). Among the patients withMHI of 1, 98.5%
had no comorbidity. This proportion decreases to 6.8% for
patients with MHI of 6. Vice versa, no patients with MHI of
1 had three comorbidities, while a majority of the patients with

Table 2 MHI classes and model variables

Probability < 0.20 0.20–0.40 0.40–0.60 0.60–0.80 0.80–0.95 > 0.95

Points < 100 100–118 119–134 135–152 153–182 > 182

MHI 1–2 2–3 3–4 4–5 5–6 > 6

MHI class I II III IV V VI

n 1946 1427 681 351 226 147

HbA1c (mmol/mol) 34 ± 3 37 ± 3 40 ± 4 44 ± 6 55 ± 8 74 ± 14

Age at phlebotomy (years) 33.5 ± 8.1 45.9 ± 6.9 50.8 ± 7.8 53.8 ± 8.1 53.5 ± 7.9 54.1 ± 8.2

Triglycerides (mmol/L) 1.1 ± 0.5 1.3 ± 0.6 1.7 ± 0.8 2.1 ± 1.0 2.5 ± 1.3 3.4 ± 1.9

Potassium (mmol/L) 4.0 ± 0.3 4.0 ± 0.3 4.0 ± 0.3 4.0 ± 0.3 4.0 ± 0.4 4.0 ± 0.4

eGFR (CKD-EPI) (mL/min/1.73m2) 110 ± 13 98 ± 13 92 ± 15 89 ± 18 89 ± 21 88 ± 25

Classification of MHI according to percentile ranges, reflecting severity of metabolic health burden due to comorbidity (mean ± SD). Shown are
predicted probability and corresponding point range according to the nomogram (see Supplemental Figure 1). Number of measurements (n), hemoglobin
A1c (HbA1c), estimated glomerular filtration rate (eGFR, using Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) formula)
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MHI of 6 had three comorbidities (40%). These observations
support our assumption that the model’s predicted probability,
which transformed into the MHI, mimics the metabolic health
burden.

Model Performance

The predictions of the 10 models in the cross-validation were
used to construct a ROC curve (Fig. 2). The mean (± 2SE)
AUC of the 10 simplified models of the cross-validation was
0.82 (± 0.02). The added value of combining multiple

variables to quantify metabolic health burden was shown by
constructing ROC curves of the model’s individual input var-
iables (Fig. 2). The AUC of the final model was significantly
larger than the AUCs of the individual variable models.

The distinctive character of the MHI was further endorsed
by comparing the MHI between patient groups with differ-
ences in the number and type of comorbidity, as defined ac-
cording the gold standard (i.e., DATO). The mean increase in
MHI, including 95% confidence interval (CI), between pa-
tients without comorbidity and patients with only dyslipid-
emia or only T2D was respectively 0.7 (0.4–0.9) and 2.0

Fig. 1 Frequency distribution of
number of comorbidities per MHI
point. An introduction to
statistical learning - with
applications in R. The distribution
of patients with either none, one,
two, or three comorbidities is
plotted for each MHI point in the
range between 1 and 6. The
number of comorbidities per
patient was based on registry data
from the Dutch Audit of
Treatment of Obesity (DATO)

Fig. 2 ROC curve of MHI.
Receiver operating characteristic
(ROC) curve of the MHI model is
plotted together with the ROC
curves of each single variable in
the MHI model. The mean ROC
curve out of 10-fold cross-
validation is shown with error
bars reflecting standard error
(SE). Mean (± 2SE) area under
the ROC curve (AUC) for the
MHI model is 0.82 (± 0.02)
compared with mean (± SE)
AUCs of 0.74 (± 0.02), 0.73 (±
0.02), 0.69 (± 0.02), 0.64 (± 0.02),
and 0.53 (± 0.02) of respectively
HbA1c, age, triglycerides, eGFR
(CKD-EPI), and potassium. The
added value of combining
variables into the MHI is
highlighted
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(1.7–2.3). As triglyceride and HbA1c levels are used to diag-
nose respectively T2D and dyslipidemia, this discrimination is
obvious. However, for patients with only hypertension, the
mean increase in MHI compared with non-comorbid patients
was 0.9 (0.7–1.0) (Fig. 3). Here, the variables included in the
MHI model are not used to diagnose hypertension. The ob-
served differences in mean MHI were all significant (p <
0.001). The ability to discriminate between patient groups
with and without hypertension was also observed in cases of
multimorbidity. In patients with either dyslipidemia or T2D,
the MHI increased on average 0.6 (0.2–1.0; p < 0.001) when
also hypertension was diagnosed (Fig. 3). On top of that, the
mean increase in MHI in the case of T2D and dyslipidemia
without and with hypertension was 0.7 (0.3–1.1; p < 0.001).
The model can thus predict hypertension, even without in-
cluding blood pressure measurements or specifying any addi-
tional treatment.

The robustness of the model was assessed with re-
spect to dependency on time (pre- and post-surgery)
and surgical procedure (SG and LRYGB). The median
difference in MHI, including interquartile range (IQR),
between the final model and the model fitted only on
pre-surgical data (n = 1595) was − 0.1 (− 0.2–0.0).
For post-surgical data (n = 3183), the median difference
in MHI with respect to the final model was 0.0 (0.0–

0.1). This procedure was repeated with respect to surgi-
cal procedure. The median MHI difference for SG (n =
2534) was − 0.1 (− 0.1–0.0) and for LRYGB (n = 2244)
0.1 (0.0–0.2). In all four cases, the median difference in
MHI was relatively small. In addition, all IQR included
zero and, thus, the observed differences were considered
not significant. Therefore, the final MHI model was con-
sidered robust and independent with respect to time and
type of surgery.

Applications of the MHI

The 25th and 75th percentile-based patient categorizationwith
respect to %TWL and MHI reduction 12 months post-surgery
resulted in the identification of “poor” performers (below 25th
percentile), “average” performers (between 25th and 75th per-
centile), and “good” performers (above 75th percentile) in
both dimensions (Table 3). According to %TWL alone, 271
patients out of 1019 would be considered as “poor” per-
formers. However, using the MHI as the second outcome
measure, a subgroup of 57 patients could be identified
underperformed with respect to weight loss but
overperformed with respect to improving their metabolic
health status. When considering only %TWL, this subgroup
would be considered as “poor” performing. However, by
adding the second dimension in the assessment using the
MHI, one might change this statement. Especially in the pa-
tient group with BMI 35–40 kg/m2, where the surgery, next to
weight loss, is mainly intended to improve metabolic health
status, this second dimension in performance assessment is of
added value.

On institutional level, the improvement in metabolic health
of treated bariatric patients was quantified with the MHI and
used to compare outcome in different subgroups (Fig. 4).
Within our dataset, the mean (± SD) baseline MHI was 3.1
(± 1.5) for the overall population. Six months after surgery, the
mean MHI decreased to 2.3 (± 1.2) and remained constant
afterwards, i.e., 2.3 (± 1.1) and 2.3 (± 1.1) at respectively 12
and 24months postoperative. There is clearly an improvement
in metabolic health status over time, which is mainly achieved
within the first 6 months after surgery. Closer evaluation of the
total population reveals two subgroups, i.e., “bariatric” pa-
tients and “metabolic” patients. Evaluation of the bariatric
patients (n = 1227) revealed a mean baseline MHI of 3.0 (±
1.5) and an overall decrease of 0.7 MHI points within 6
months post-surgery. The metabolic patients (n = 195) had a
mean baseline MHI of 4.3 (± 1.5) with an overall decrease of
1.1MHI points after 6 months (Fig. 4). The metabolic patients
indeed have a different (higher) starting point with respect to
MHI compared with the bariatric patients. Their improvement
in MHI also is larger over the same time period, emphasizing
the impact of bariatric surgery on improving comorbidity in
this patient group.

Fig. 3 MHI and hypertension. Boxplot showing the increase in MHI for
categories of comorbidity including hypertension. Boxes represent the
area between the first (Q1) and third quartile (Q3). Medians are plotted
within the boxes. Notches represent confidence interval around the me-
dian. The whiskers display 1.5 times interquartile range (IQR, Q3–Q1) or
minimum/maximum when inside IQR. The open dots represent outliers
(> 1.5 IQR). None = no comorbidity (n = 3280), Hyp = hypertension (n =
630), Hyp+Dys = hypertension and dyslipidemia (n = 180), T2D+Hyp+
Dys = T2D and hypertension and dyslipidemia (n = 199)
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Table 3 MHI as outcome
measure next to %TWL % total weight loss (12M)

Q1
(≤ 28%TWL)

Q2–Q3
(28–38%TWL)

Q4
(> 38%TWL)

Total

MHI reduction (12 M) Q1

(ΔMHI ≤ 0.2)

67 99 56 222

Q2–Q3

(ΔMHI 0.2–1.3)

148 273 121 542

Q4

(ΔMHI > 1.3)

57 131 67 255

Total 272 502 244 1019

Improvement in MHI as outcome measure in addition to percentage of total weight loss (%TWL) at 12 months
after surgery (12 M). The population is categorized into three groups based on percentile ranges, where Q1 is the
25th percentile (“poor” performers) and Q4 is the 75th percentile (“good” performers). Quartiles 2 and 3 are
combined and reflect the median 50% of the population (“average” performers)

Fig. 4 MHI diagrams. Diagrams (pie charts) of the distribution of MHI
classes per period in time for the total population (top row), the “bariatric”
subpopulation with BMI ≥ 40 kg/m2 (middle row), and the “metabolic”
subpopulation with BMI between 35 and 40 kg/m2 with at least one

obesity-related comorbidity like T2D, hypertension, or dyslipidemia
(bottom row). Mean overall MHI is given in the center of each chart.
Number of patients (n)
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Discussion

Quantification of patient status through data-driven indices is
a recent trend in medicine [28]. The development of the MHI
is in line with this trend. The MHI enables the transition from
a binary label, indicating the presence or absence of comor-
bidity, into a continuous index quantifying severity of meta-
bolic health burden due to comorbidity. Instead of three sep-
arate outcome labels for the comorbidities T2D, hypertension,
and dyslipidemia, one single objective measure is presented.
The MHI includes the crosstalk between the three comorbid-
ities, reflecting the continuum of the metabolic syndrome, and
is independent with respect to day of sampling and surgery
type. The MHI is capable of discriminating patients with in-
creasing number of comorbidities, including hypertension
which is not diagnosed based on biomarkers. Having one
single, easy to interpret measure simplifies comparisons with
other outcome measures like BMI or %TWL, compared with
having to analyze outcome per comorbidity separately.

The MHI can be used to refine the readily available infor-
mation that a patient has comorbidity, in the sense that the
severity of comorbidity can now be quantified using a contin-
uous score. Also improvement in comorbidity and resolution
can be quantified using the MHI. The MHI correlates with the
number of drugs a hypertensive patient uses, i.e., mean MHI
increased with increasing number of antihypertensive drugs
(data not shown). The same phenomenon was observed in
diabetic patients using oral medication only compared with
insulin. These findings support the statement that the MHI
allows for objective quantification of the severity of comor-
bidity and the identification of minor improvements in comor-
bidity, not captured by the current criteria.

Compared with otherMetS scores like EOSS, cMSy, siMS,
and MetSSS, the MHI has the advantage that it can be used as
outcome measure because it is both continuous and based on
variables that can be objectively obtained. The MHI is, be-
sides age at phlebotomy, solely based on objectively obtained
laboratory measurements. This objective character is a main
asset of the MHI compared with all other MetS scores. In
addition, the MHI is relatively easy to implement as additional
laboratory variable as all five variables are already available in
the laboratory information system. The MHI could be auto-
matically reported as a calculated variable next to routine an-
alytical variables. This makes the MHI beneficial over other
MetS scoring algorithms that use separate platforms and,
therefore, are not easily available to automatically calculate
the outcome.

The MHI is largely intuitive, despite being built through a
data-driven approach. The combination of HbA1c, age, tri-
glycerides, eGFR, and potassium results in a higher discrim-
inative power with respect to identifying comorbidity com-
pared with each variable separately. Where HbA1c or triglyc-
eride levels alone each resulted in an AUC of 0.74 and 0.69

respectively, combining them with age, eGFR, and potassium
into the MHI increased the AUC to 0.82. The data-driven
approach selected these five well-recognized variables as op-
timal input. The selection of biomarkers HbA1c and triglyc-
erides is intuitive as they both are used in the diagnosis of T2D
and dyslipidemia respectively. It is also well known that age is
related to prevalence of comorbidity in general. The involve-
ment of renal function, expressed by eGFR according to the
CKD-EPI formula, can be explained by the end-organ damage
induced by hypertension and/or T2D. The inclusion of potas-
sium as a variable in the MHI model is less obvious. In the
approximation of the full MHI model, the exclusion of potas-
sium as the fifth variable decreased the R2 only from 0.95 to
0.94, so one may argue its role in the final MHI model.
Nonetheless, sub-analysis showed that the subgroup of pa-
tients with hypertension had significantly lower potassium
levels compared with subgroups without or with other (com-
binations of) comorbidity. Potassium levels can be decreased
upon use of diuretics in the treatment of hypertension. It can
even result in hypopotassemia depending on the type and
number of diuretics used. The potassium level is more likely
to decrease when multiple antihypertensive drugs are used.
We therefore believe that in the MHI model, potassium is
reflecting the use of (multiple) antihypertensive drugs and is
related with the severity (or persistency) of hypertension.

The approach of including only objective laboratory data
has several limitations. Only comorbidities T2D, hyperten-
sion, and dyslipidemia were used in the development of the
MHI as these represent the MetS. Additional data on these
comorbidities such as physical fitness or perceived quality of
life could improve the quantification of disease burden
[29–31]. However, these types of data contain a degree of
subjectiveness which makes them harder to compare. Also,
no information on medical treatment was taken into account.
One could argue that higher HbA1c levels without insulin are
not even worse than a lower value while still using antidia-
betics. On the other hand, the glycemic status is the goal irre-
spective to its treatment (e.g., lifestyle advice an/or bypass
and/or metformin) and surpasses the difficulties encountered
in scoring and rating the medications.

The MHI can serve as a clinical performance indicator next
to weight-focused markers like %TWL, as shown in Table 3.
Although the definition of "poor," "average," and "good" per-
former was data-driven, a group of patients was identified by
using the MHI, which was considered "poor" with respect to
%TWL but "good" when considering reduction in MHI. The
MHI can also be used to compare subgroups, e.g., based on
performed type of surgery like SG or LRYGB, within a single
institution as well as between different institutions. However,
more research is needed with respect to the generalizability of
the MHI and its application in different populations.
Laboratory tests are not standardized and clinical decision-
making regarding diagnosis and treatment may depend on
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local and not universal practice. Prospective studies for exam-
ining the additional value for the individual patient have not
been performed, but one might argue that there is a potential
role for the MHI as a tool to personalize individual counseling
in postoperative monitoring. Currently, there has not been a
trial where treatment regimens with or without MHI were
compared. As age is one of the variables to calculate the
MHI, one might consider an age-corrected MHI to rule-out
the effect of aging during monitoring. Furthermore, the MHI
might be used to manage patient expectations and may im-
prove compliance as complying to one measure summarizing
your metabolic health status is intuitively beneficial over three
separate outcomes for each comorbidity.

There are currently no clear criteria with respect to the
assessment of improvement of metabolic health status. In dai-
ly practice, this assessment now relies on the physician’s ob-
servation, which may be subject to observer bias. The influ-
ence of changing medication regimes also troubles the assess-
ment of improvement in metabolic health. Despite its limita-
tions, the physician’s observation is currently the gold stan-
dard in the follow-up of metabolic health status after bariatric
surgery. As the physician’s assessment was used to develop
our model, the MHI never will replace the physician’s judg-
ment, but definitely will support the physician in a more ob-
jective assessment of comorbidity.

Conclusions

In conclusion, the MHI enables objective assessment of met-
abolic health status in bariatric patients concerning comorbid-
ities T2D, hypertension, and dyslipidemia. Hereby, additional
value has been created through merging and mining available
clinical and laboratory data. Although built by a data-driven
approach, our model is largely intuitive. The MHI does not
only have the potential to support clinical decision-making,
but could also serve as a useful tool for research and policy
makers to better define the impact and improvement of
obesity-related comorbidities on metabolic health status.
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