28 research outputs found

    Identification tools as part of Feedsafety research: the case of ragwort

    Get PDF
    Ragwort (Senecio jacobaea) and related species of the genus Senecio are the main source of pyrrolizidine alkaloids. These plants grow in road verges, meadows and production fields and they show up in parties of roughage: grass and alfalfa. Monitoring can be carried out during the field production and harvesting stages. The final objective is to reject parties with a too high contamination level. Identification tools can support the decision to accept or refuse materials for the food production chain. A ragwort model has been developed for the mobile application Determinator. This identification model includes the relevant objects (species of the genus Senecio), and a range of so called confusing objects in order to minimise the chance of false positive identifications

    Future perspectives in melanoma research: meeting report from the "Melanoma Bridge";: Napoli, December 3rd-6th 2014.

    Get PDF
    The fourth "Melanoma Bridge Meeting" took place in Naples, December 3-6th, 2014. The four topics discussed at this meeting were: Molecular and Immunological Advances, Combination Therapies, News in Immunotherapy, and Tumor Microenvironment and Biomarkers. Until recently systemic therapy for metastatic melanoma patients was ineffective, but recent advances in tumor biology and immunology have led to the development of new targeted and immunotherapeutic agents that prolong progression-free survival (PFS) and overall survival (OS). New therapies, such as mitogen-activated protein kinase (MAPK) pathway inhibitors as well as other signaling pathway inhibitors, are being tested in patients with metastatic melanoma either as monotherapy or in combination, and all have yielded promising results. These include inhibitors of receptor tyrosine kinases (BRAF, MEK, and VEGFR), the phosphatidylinositol 3 kinase (PI3K) pathway [PI3K, AKT, mammalian target of rapamycin (mTOR)], activators of apoptotic pathway, and the cell cycle inhibitors (CDK4/6). Various locoregional interventions including radiotherapy and surgery are still valid approaches in treatment of advanced melanoma that can be integrated with novel therapies. Intrinsic, adaptive and acquired resistance occur with targeted therapy such as BRAF inhibitors, where most responses are short-lived. Given that the reactivation of the MAPK pathway through several distinct mechanisms is responsible for the majority of acquired resistance, it is logical to combine BRAF inhibitors with inhibitors of targets downstream in the MAPK pathway. For example, combination of BRAF/MEK inhibitors (e.g., dabrafenib/trametinib) have been demonstrated to improve survival compared to monotherapy. Application of novel technologies such sequencing have proven useful as a tool for identification of MAPK pathway-alternative resistance mechanism and designing other combinatorial therapies such as those between BRAF and AKT inhibitors. Improved survival rates have also been observed with immune-targeted therapy for patients with metastatic melanoma. Immune-modulating antibodies came to the forefront with anti-CTLA-4, programmed cell death-1 (PD-1) and PD-1 ligand 1 (PD-L1) pathway blocking antibodies that result in durable responses in a subset of melanoma patients. Agents targeting other immune inhibitory (e.g., Tim-3) or immune stimulating (e.g., CD137) receptors and other approaches such as adoptive cell transfer demonstrate clinical benefit in patients with melanoma as well. These agents are being studied in combination with targeted therapies in attempt to produce longer-term responses than those more typically seen with targeted therapy. Other combinations with cytotoxic chemotherapy and inhibitors of angiogenesis are changing the evolving landscape of therapeutic options and are being evaluated to prevent or delay resistance and to further improve survival rates for this patient population. This meeting's specific focus was on advances in combination of targeted therapy and immunotherapy. Both combination targeted therapy approaches and different immunotherapies were discussed. Similarly to the previous meetings, the importance of biomarkers for clinical application as markers for diagnosis, prognosis and prediction of treatment response was an integral part of the meeting. The overall emphasis on biomarkers supports novel concepts toward integrating biomarkers into contemporary clinical management of patients with melanoma across the entire spectrum of disease stage. Translation of the knowledge gained from the biology of tumor microenvironment across different tumors represents a bridge to impact on prognosis and response to therapy in melanoma

    Future perspectives in melanoma research: meeting report from the “Melanoma Bridge”: Napoli, December 3rd–6th 2014

    Full text link

    Measurement uncertainty for detection of visual impurities in granular feed and food materials in relation to the investigated amount of material

    No full text
    The presence is regulated of visually detectable seeds from a selection of toxic plants and fungi mycelium bodies (sclerotia) in feed (Directive 2002/32/EC) and in food (Regulation (EC) 1881/2006). Homogenisation as typical for chemical analyses is not applicable, and dedicated approaches are needed for visual examination methods. Visual methods require two parameters to characterise measurement uncertainties for both unit counts and unit weights. A new approach is to divide approximately 2 kg of sample material into four subsamples of approximately 500 g and to separately examine the four subsamples for numbers and particle weights of seeds or sclerotia. This study is the first to produce datasets on inhomogeneity among subsamples of a sample for visually detectable undesirable substances. Analytical thresholds were calculated from a simulation model and bootstrap procedures based on our data. The analytical thresholds assuring a controlled false-negative rate of 5% for decisions in compliance with legal limits depend on the diversity of the unit counts and weights, the level of the legal limit and the amount of material examined initially in the step-wise approach, either one or two subsamples. A procedure is proposed for examination in practice where only two subsamples, or alternatively even only one subsample, would be examined. If the resulting level of contamination exceeds the relevant threshold additional subsamples need to be examined as well. In most of the investigated cases, analytical thresholds could be established for the examination of just one subsample (500 g) taken from a sample of 2 kg. However, for ergot sclerotia in food with a legal limit of 200 mg kg−1, at least two subsamples (1000 g) need to be examined in the first step. Other groups of visually detectable undesirable substances exist which need further attention

    Measurement uncertainty for detection of visual impurities in granular feed and food materials in relation to the investigated amount of material

    No full text
    The presence is regulated of visually detectable seeds from a selection of toxic plants and fungi mycelium bodies (sclerotia) in feed (Directive 2002/32/EC) and in food (Regulation (EC) 1881/2006). Homogenisation as typical for chemical analyses is not applicable, and dedicated approaches are needed for visual examination methods. Visual methods require two parameters to characterise measurement uncertainties for both unit counts and unit weights. A new approach is to divide approximately 2 kg of sample material into four subsamples of approximately 500 g and to separately examine the four subsamples for numbers and particle weights of seeds or sclerotia. This study is the first to produce datasets on inhomogeneity among subsamples of a sample for visually detectable undesirable substances. Analytical thresholds were calculated from a simulation model and bootstrap procedures based on our data. The analytical thresholds assuring a controlled false-negative rate of 5% for decisions in compliance with legal limits depend on the diversity of the unit counts and weights, the level of the legal limit and the amount of material examined initially in the step-wise approach, either one or two subsamples. A procedure is proposed for examination in practice where only two subsamples, or alternatively even only one subsample, would be examined. If the resulting level of contamination exceeds the relevant threshold additional subsamples need to be examined as well. In most of the investigated cases, analytical thresholds could be established for the examination of just one subsample (500 g) taken from a sample of 2 kg. However, for ergot sclerotia in food with a legal limit of 200 mg kg−1, at least two subsamples (1000 g) need to be examined in the first step. Other groups of visually detectable undesirable substances exist which need further attention

    Specificity of a novel TaqMan PCR method for detection of poultry DNA

    No full text
    After the Bovine Spongiform Encephalopathy (BSE) crisis emerged in 1985/1986, all processed animal proteins (PAPs) were finally banned for use in animal feed in the European Union. To partially lift this feed ban, paths for re-introduction of PAPs from species other than ruminants e.g. pig and poultry, are described in the Transmissible Spongiform Encephalopathies (TSE) Roadmap 2. Cannibalism, however, is still not allowed. Specific detection methods for pig and poultry meal and PAPs are prerequisites for reintroduction of pig and poultry processed animal proteins into animal feed. Developing a sensitive PCR method that specifically detects the taxonomically diverse and therefore artificial group ‘poultry’ and that does not detect other birds at the same time is a challenge. Here, a novel TaqMan PCR method for poultry detection is presented. The specificity of the poultry method against target and non-target species has been extensively investigated. The efficiency, linearity and sensitivity was tested using dilution series of chicken, turkey, duck and goose DNA isolated from meat and autoclaved meat as a model system for PAPs

    Hyperspectral imaging as a novel system for the authentication of spices : A nutmeg case study

    No full text
    This study deals with the development of Nutmeg (Myristica fragrans Houtt.) authentication methodology using hyperspectral imaging. Fifteen authentic samples, seven adulterant materials (i.e. 1 pericarp, 1 shell, and 5 spent samples) and 31 retail samples were used for this purpose. Furthermore, another set of adulterated nutmeg samples were artificially prepared by mixing authentic material with spent powder (5–60%). A new handheld hyperspectral imaging system was applied to obtain hyperspectral information of nutmeg powder samples in the wavelength region of 400–1000 nm. Principal Component Analysis (PCA), Partial Least Squares-Discriminant Analysis (PLS-DA) and Artificial Neural Network (ANN) models were applied for exploring the data, constructing the models, and authenticating the retail samples. The PCA showed successful spatial separation of authentic samples from adulterant materials. An ANN model predicted and showed the ability to detect adulteration at levels as low as 5% of added product-own material which was more accurate than PLS-DA model. Microscopic analysis was applied for comparison with hyperspectral imaging and to verify possible sample modification. It was concluded that the method applied here has good potential for the development of a visual quality control procedure for nutmeg powder authentication.</p
    corecore