42 research outputs found

    The structure of the PanD/PanZ protein complex reveals negative feedback regulation of pantothenate biosynthesis by coenzyme A.

    Get PDF
    Coenzyme A (CoA) is an ubiquitous and essential cofactor, synthesized from the precursor pantothenate. Vitamin biosynthetic pathways are normally tightly regulated, including the pathway from pantothenate to CoA. However, no regulation of pantothenate biosynthesis has been identified. We have recently described an additional component in the pantothenate biosynthetic pathway, PanZ, which promotes the activation of the zymogen, PanD, to form aspartate ?-decarboxylase (ADC) in a CoA-dependent manner. Here we report the structure of PanZ in complex with PanD, which reveals the structural basis for the CoA dependence of this interaction and activation. In addition, we show that PanZ acts as a CoA-dependent inhibitor of ADC catalysis. This inhibitory effect can effectively regulate the biosynthetic pathway to pantothenate, and thereby also regulate CoA biosynthesis. This represents a previously unobserved mode of metabolic regulation whereby a cofactor-utilizing protein negatively regulates the biosynthesis of the same cofactor

    Metformin reduces liver glucose production by inhibition of fructose-1-6-bisphosphatase.

    Get PDF
    Metformin is a first-line drug for the treatment of individuals with type 2 diabetes, yet its precise mechanism of action remains unclear. Metformin exerts its antihyperglycemic action primarily through lowering hepatic glucose production (HGP). This suppression is thought to be mediated through inhibition of mitochondrial respiratory complex I, and thus elevation of 5'-adenosine monophosphate (AMP) levels and the activation of AMP-activated protein kinase (AMPK), though this proposition has been challenged given results in mice lacking hepatic AMPK. Here we report that the AMP-inhibited enzyme fructose-1,6-bisphosphatase-1 (FBP1), a rate-controlling enzyme in gluconeogenesis, functions as a major contributor to the therapeutic action of metformin. We identified a point mutation in FBP1 that renders it insensitive to AMP while sparing regulation by fructose-2,6-bisphosphate (F-2,6-P2), and knock-in (KI) of this mutant in mice significantly reduces their response to metformin treatment. We observe this during a metformin tolerance test and in a metformin-euglycemic clamp that we have developed. The antihyperglycemic effect of metformin in high-fat diet-fed diabetic FBP1-KI mice was also significantly blunted compared to wild-type controls. Collectively, we show a new mechanism of action for metformin and provide further evidence that molecular targeting of FBP1 can have antihyperglycemic effects

    The riddle of formycin A insulinotropic action.

    No full text
    Formycin A augments insulin release evoked by glucose (5.6 mm or more), this effect not being rapidly reversible. The mechanism responsible for the insulinotropic action of formycin A was investigated in isolated pancreatic islets. It could not be ascribed to facilitation of glucose metabolism. On the contrary, formycin A inhibited glucose oxidation, lowered ATP content, and impaired glucose-stimulated protein biosynthesis. The insulinotropic action of formycin A was apparently attributable to its conversion to formycin A 5'-triphosphate, both this process and the secretory response to formycin A being abolished by the inhibitor of adenosine kinase 5-iodotubercidin. In agreement with the latter view, adenosine receptor antagonists such as 8-cyclopentyl-1, 3-dipropylxanthine and 3,7-dimethyl-1-propargylxanthine failed to suppress and, instead, augmented the insulinotropic action of formycin A. Unexpectedly, however, formycin A failed to decrease 86Rb efflux, this coinciding with a low efficiency of formycin A 5'-triphosphate to inhibit KATP-channel activity in excised membranes and with the fact that formycin A increased gliben-clamide-stimulated insulin release. The secretory response to formycin A represented a Ca2+-dependent process suppressed in the absence of extracellular Ca2+ or presence of verapamil and associated with an increased net uptake of 45Ca. Nevertheless, the view that formycin A exerts any major effect upon intracellular Ca2+ redistribution, protein kinase C activity, or cyclic AMP net production also met with objections such as the minor secretory effect of formycin A in islets exposed to a high concentration of K+ in the presence of a diazoxide analog, the resistance of formycin A insulinotropic action to bisindolylmaleimide, the poor increase of cyclic AMP content in formycin A-stimulated islets, and the pronounced enhancement by forskolin or theophylline of insulin release from islets exposed to formycin A. It is concluded, therefore, that the mechanism of action of formycin A in the pancreatic beta-cell remains to be elucidated.In VitroJournal ArticleResearch Support, Non-U.S. Gov'tinfo:eu-repo/semantics/publishe
    corecore