179 research outputs found

    Nitric oxide pollutant formation in high hydrogen content (HHC) syngas flames

    Get PDF
    Three-dimensional direct numerical simulations (DNS) of high hydrogen content (HHC) syngas nonpremixed jet flames with a Reynolds number of Re = 6000 have been carried out to study the nitric oxide (NO) pollutant formation. The detailed chemistry employed is the GRI 3.0 updated with the influence of the NCN radical chemistry using flamelet generated manifolds (FGM). Preferential diffusion effects have been considered via FGM tabulation and the reaction progress variable transport equation. The DNS based quantitative results indicate a strong correlation between the flame temperature and NO concentration for the pure hydrogen flame, in which NO formation is mainly characterised by the Zeldovich mechanism. The results also indicate a rapid decrease of maximum NO values in H2/CO syngas mixtures due to lower temperatures associated with the CO-dilution into H2. Results on NO formation routes in H2/CO syngas flames show that while the Zeldovich mechanism dominates the NO formation at low strain rates, the high NO formation rate at high strain rates is entirely caused by the NNH mechanism. We also found that the Fenimore mechanism has a least contribution on NO formation in H2/CO syngas flames due to absence of CH radicals in the oxidation of CO. It is found that, due to preferential diffusion, NO concentration exhibits higher values near the flame base depending on the hydrogen content in H2/CO syngas fuel mixture

    High hydrogen content syngas fuel burning in lean premixed spherical flames at elevated pressures: Effects of preferential diffusion

    Get PDF
    This study addresses the effects of preferential diffusion on flame structure and propagation of high hydrogen content (HHC) turbulent lean premixed hydrogen-carbon monoxide syngas flames at elevated pressures. The direct numerical simulations with detailed chemistry were performed in three-dimensional domain for expanding spherical flame configuration in a constant pressure combustion chamber. To identify the role of preferential diffusion on flame structure and propagation under low and high turbulence levels at elevated pressure, simulations were performed at an initial turbulent Reynolds number of 15 and 150 at a pressure value of 4 bar. The results demonstrate that the thermo-diffusive instability greatly influences the lean premixed syngas cellular flame structure due to strong preferential diffusion effects under low turbulence level at elevated pressure. In contrast, the results reveal that the thermo-diffusive effects are destabilising and preferential diffusion is overwhelmed by turbulent mixing under high turbulence level at elevated pressure. This finding suggests that the development of cellular flame structure is dominated by turbulence with little or no contribution from the thermo-diffusive instability for the lean premixed syngas flame which operates under conditions of high turbulence and elevated pressures. However, results demonstrate that the flame acceleration and species diffusive flux are still influenced by the preferential diffusion for the lean premixed syngas flame which operates under conditions of high turbulence and elevated pressures

    Heat release rate variations in high hydrogen content premixed syngas flames at elevated pressures: Effect of equivalence ratio

    Get PDF
    Three-dimensional direct numerical simulations with detailed chemistry were performed to investigate the effect of equivalence ratio on spatial variations of the heat release rate and flame markers of hydrogen/carbon monoxide syngas expanding spherical premixed flames under turbulent conditions at elevated pressures. The flame structures and the heat release rate were analysed and compared between fuel-lean, stoichiometric and fuel-rich centrally ignited spherical flames. The equivalence ratio changes the balance among thermo-diffusive effects, Darrieus–Landau instability and turbulence, leading to different flame dynamics and the heat release rate distribution, despite exhibiting similar cellular and wrinkling flames. The Darrieus–Landau instability is relatively insensitive to the equivalence ratio while the thermo-diffusive process is strongly affected by the equivalence ratio. As the thermo-diffusive effect increases as the equivalence ratio decreases, the fuel-lean flame is more unstable than the fuel-rich flame with the stoichiometric flame in between, under the joint effects of the thermo-diffusive instability and the Darrieus–Landau instability. The local heat release rate and curvature display a positive correlation for the lean flame, no correlation for the stoichiometric flame, and negative correlation for the rich flame. Furthermore, for the fuel-lean flame, the low and high heat release rate values are found in the negative and positive curvature zones, respectively, while for the fuel-rich flame, the opposite trends are found. It is found that heat release rate markers based on species concentrations vary strongly with changing equivalence ratio. The results suggest that the HCO, HO2 concentrations and product of OH and CH2O concentrations show good correlation with the local heat release rate for H2/CO premixed syngas-air stoichiometric flame under turbulent conditions at elevated pressures

    On the surface chemisorption of oxidizing fine iron particles: insights gained from molecular dynamics simulations

    Get PDF
    Molecular dynamics (MD) simulations are performed to investigate the thermal and mass accommodation coefficients (TAC and MAC, respectively) for the combination of iron(-oxide) and air. The obtained values of TAC and MAC are then used in a point-particle Knudsen model to investigate the effect of chemisorption and the Knudsen transition regime on the combustion behavior of (fine) iron particles. The thermal accommodation for the interactions of Fe with N2 and FexOy with O2 is investigated for different surface temperatures, while the mass accommodation coefficient for iron(-oxide) with oxygen is investigated for different initial oxidation stages ZO, which represents the molar ratio of O/(O + Fe), and different surface temperatures. The MAC decreases fast from unity to 0.03 as ZO increases from 0 to 0.5 and then diminishes as ZO further increases to 0.57. By incorporating the MD-informed accommodation coefficients into the single iron particle combustion model, the oxidation beyond ZO = 0.5 (from stoichiometric FeO to Fe3O4) is modeled. A new temperature evolution for single iron particles is observed compared to results obtained with previously developed continuum models. Specifically, results of the present simulations show that the oxidation process continues after the particle reaching the peak temperature, while previous models predicting that the maximum temperature was attained when the particle is oxidized to ZO = 0.5. Since the rate of oxidation slows down as the MAC decreases with an increasing oxidation stage, the rate of heat loss exceeds the rate of heat release upon reaching the maximum temperature, while the particle is not yet oxidized to ZO = 0.5. Finally, the effect of transition-regime heat and mass transfer on the combustion behavior of fine iron particles is investigated and discussed

    Iron, silicate, and light co-limitation of three Southern Ocean diatom species

    Get PDF
    The effect of combined iron, silicate, and light co-limitation was investigated in the three diatom species Actinocyclus sp. Ehrenberg, Chaetoceros dichaeta Ehrenberg, and Chaetoceros debilis Cleve, isolated from the Southern Ocean (SO). Growth of all species was co-limited by iron and silicate, reflected in a significant increase in the number of cell divisions compared to the control. Lowest relative Si uptake and drastic frustule malformation was found under iron and silicate co-limitation in C. dichaeta, while Si limitation in general caused cell elongation in both Chaetoceros species. Higher light intensities similar to SO surface conditions showed a negative impact on growth of C. dichaeta and Actinocyclus sp. and no effect on C. debilis. This is in contrast to the assumed light limitation of SO diatoms due to deep wind driven mixing. Our results suggest that growth and species composition of Southern Ocean diatoms is influenced by a sensitive interaction of the abiotic factors, iron, silicate, and light

    DNA primase acts as a molecular brake in DNA replication

    Get PDF
    A hallmark feature of DNA replication is the coordination between the continuous polymerization of nucleotides on the leading strand and the discontinuous synthesis of DNA on the lagging strand. This synchronization requires a precisely timed series of enzymatic steps that control the synthesis of an RNA primer, the recycling of the lagging-strand DNA polymerase, and the production of an Okazaki fragment. Primases synthesize RNA primers at a rate that is orders of magnitude lower than the rate of DNA synthesis by the DNA polymerases at the fork. Furthermore, the recycling of the lagging-strand DNA polymerase from a finished Okazaki fragment to a new primer is inherently slower than the rate of nucleotide polymerization. Different models have been put forward to explain how these slow enzymatic steps can take place at the lagging strand without losing coordination with the continuous and fast leading-strand synthesis. Nonetheless, a clear picture remains elusive. Here we use single-molecule techniques to study the kinetics of a multiprotein replication complex from bacteriophage T7 and to characterize the effect of primase activity on fork progression. We observe the synthesis of primers on the lagging strand to cause transient pausing of the highly processive leading-strand synthesis. In the presence of both leading- and lagging-strand synthesis, we observe the formation and release of a replication loop on the lagging strand. Before loop formation, the primase acts as a molecular brake and transiently halts progression of the replication fork. This observation suggests a mechanism that prevents leading-strand synthesis from outpacing lagging-strand synthesis during the slow enzymatic steps on the lagging strand
    • …
    corecore