17 research outputs found

    Ontwerp van een kalibratieopstelling voor precisietasters en ruwheidssensoren

    Get PDF

    (R)evolutionary improvements in the design of interventional X-ray systems

    Get PDF
    Interventional X-ray systems are used to acquire 2D and 3D images of complex anatomical structures (e.g. the cardiovascular system). These images provide a clinician with feedback in a medical procedure, which enables advanced minimally invasive treatments. A typical interventional X-ray system contains an X-ray source and detector, connected by a C-shaped arm. Several stacked motion systems enable the C-arm and imaging equipment to move spherically around an isocentre. This allows for 2D X-ray images to be taken at various projection angles. Other imaging techniques such as 3D computed tomography are enabled by this core functionality. Developments in interventional X-ray systems are often a compromise between performance, clinical usability, and cost. This paper presents three novel mechatronic architectures, which are designed to break through this trade-off. The proposed designs aim to improve the interventional X-ray system on multiple, application-specific levels. The first system focusses on improved image quality and clinical usability of 3D scans (high-end applications). A dual stage design allows for significantly extended and faster scanning motions, with a 55% smaller footprint in the operating room. It is based on a quasi-kinematic roll guide design, resulting in less nonlinear behaviour, and improved alignment of the imaging equipment. The second system decreases cost and installation requirements, while maintaining and adding to the current imaging capability (low-end applications). By reconsidering the degrees of freedom needed, a lightweight design is created (&gt;50% mass reduction), with an improved stiffness to mass ratio. Both system 1 and 2 present an evolutionary improvement on existing architectures. As a revolutionary alternative, the third system pursues high-end performance and optimised workflow, at reduced overall cost. It features a compact and lightweight (~500 kg) mechatronic design which makes optimal use of the space available in the operating room. A full scale mock-up of this system has been built. Currently, a detailed design, including hardware realisation is being made for experimental performance validation at subsystem level.</p

    An X-ray imaging device

    Get PDF

    (R)evolutionary improvements in the design of interventional X-ray systems

    Get PDF
    Interventional X-ray systems are used to acquire 2D and 3D images of complex anatomical structures (e.g. the cardiovascular system). These images provide a clinician with feedback in a medical procedure, which enables advanced minimally invasive treatments. A typical interventional X-ray system contains an X-ray source and detector, connected by a C-shaped arm. Several stacked motion systems enable the C-arm and imaging equipment to move spherically around an isocentre. This allows for 2D X-ray images to be taken at various projection angles. Other imaging techniques such as 3D computed tomography are enabled by this core functionality. Developments in interventional X-ray systems are often a compromise between performance, clinical usability, and cost. This paper presents three novel mechatronic architectures, which are designed to break through this trade-off. The proposed designs aim to improve the interventional X-ray system on multiple, application-specific levels. The first system focusses on improved image quality and clinical usability of 3D scans (high-end applications). A dual stage design allows for significantly extended and faster scanning motions, with a 55% smaller footprint in the operating room. It is based on a quasi-kinematic roll guide design, resulting in less nonlinear behaviour, and improved alignment of the imaging equipment. The second system decreases cost and installation requirements, while maintaining and adding to the current imaging capability (low-end applications). By reconsidering the degrees of freedom needed, a lightweight design is created (&gt;50% mass reduction), with an improved stiffness to mass ratio. Both system 1 and 2 present an evolutionary improvement on existing architectures. As a revolutionary alternative, the third system pursues high-end performance and optimised workflow, at reduced overall cost. It features a compact and lightweight (~500 kg) mechatronic design which makes optimal use of the space available in the operating room. A full scale mock-up of this system has been built. Currently, a detailed design, including hardware realisation is being made for experimental performance validation at subsystem level.</p

    Microgravity simulation by diamagnetic levitation: effects of a strong gradient magnetic field on the transcriptional profile of Drosophila melanogaster

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many biological systems respond to the presence or absence of gravity. Since experiments performed in space are expensive and can only be undertaken infrequently, Earth-based simulation techniques are used to investigate the biological response to weightlessness. A high gradient magnetic field can be used to levitate a biological organism so that its net weight is zero.</p> <p>Results</p> <p>We have used a superconducting magnet to assess the effect of diamagnetic levitation on the fruit fly <it>D. melanogaster </it>in levitation experiments that proceeded for up to 22 consecutive days. We have compared the results with those of similar experiments performed in another paradigm for microgravity simulation, the Random Positioning Machine (RPM). We observed a delay in the development of the fruit flies from embryo to adult. Microarray analysis indicated changes in overall gene expression of imagoes that developed from larvae under diamagnetic levitation, and also under simulated hypergravity conditions. Significant changes were observed in the expression of immune-, stress-, and temperature-response genes. For example, several heat shock proteins were affected. We also found that a strong magnetic field, of 16.5 Tesla, had a significant effect on the expression of these genes, independent of the effects associated with magnetically-induced levitation and hypergravity.</p> <p>Conclusions</p> <p>Diamagnetic levitation can be used to simulate an altered effective gravity environment in which gene expression is tuned differentially in diverse <it>Drosophila melanogaster </it>populations including those of different age and gender. Exposure to the magnetic field <it>per se </it>induced similar, but weaker, changes in gene expression.</p

    Ontwerp van een innovatief sorteersysteem

    No full text
    corecore