377 research outputs found
Confinement and Quantization Effects in Mesoscopic Superconducting Structures
We have studied quantization and confinement effects in nanostructured
superconductors. Three different types of nanostructured samples were
investigated: individual structures (line, loop, dot), 1-dimensional (1D)
clusters of loops and 2D clusters of antidots, and finally large lattices of
antidots. Hereby, a crossover from individual elementary "plaquettes", via
clusters, to huge arrays of these elements, is realized. The main idea of our
study was to vary the boundary conditions for confinement of the
superconducting condensate by taking samples of different topology and, through
that, modifying the lowest Landau level E_LLL(H). Since the critical
temperature versus applied magnetic field T_c(H) is, in fact, E_LLL(H) measured
in temperature units, it is varied as well when the sample topology is changed
through nanostructuring. We demonstrate that in all studied nanostructured
superconductors the shape of the T_c(H) phase boundary is determined by the
confinement topology in a unique way.Comment: 28 pages, 19 EPS figures, uses LaTeX's aipproc.sty, contribution to
Euroschool on "Superconductivity in Networks and Mesoscopic Systems", held in
Siena, Italy (8-20 september 1997
Control of membrane barrier during bacterial type-III protein secretion
Type-III secretion systems (T3SSs) of the bacterial flagellum and the evolutionarily related injectisome are capable of translocating proteins with a remarkable speed of several thousand amino acids per second. Here, we investigate how T3SSs are able to transport proteins at such a high rate while preventing the leakage of small molecules. Our mutational and evolutionary analyses demonstrate that an ensemble of conserved methionine residues at the cytoplasmic side of the T3SS channel create a deformable gasket (M-gasket) around fast-moving substrates undergoing export. The unique physicochemical features of the M-gasket are crucial to preserve the membrane barrier, to accommodate local conformational changes during active secretion, and to maintain stability of the secretion pore in cooperation with a plug domain (R-plug) and a network of salt-bridges. The conservation of the M-gasket, R-plug, and salt-bridge network suggests a universal mechanism by which the membrane integrity is maintained during high-speed protein translocation in all T3SSs.Peer Reviewe
Phase-Locking of Vortex Lattices Interacting with Periodic Pinning
We examine Shapiro steps for vortex lattices interacting with periodic
pinning arrays driven by AC and DC currents. The vortex flow occurs by the
motion of the interstitial vortices through the periodic potential generated by
the vortices that remain pinned at the pinning sites. Shapiro steps are
observed for fields B_{\phi} < B < 2.25B_{\phi} with the most pronouced steps
occuring for fields where the interstitial vortex lattice has a high degree of
symmetry. The widths of the phase-locked current steps as a function of the
magnitude of the AC driving are found to follow a Bessel function in agreement
with theory.Comment: 5 pages 5 postscript figure
Structure and Magnetization of Two-Dimensional Vortex Arrays in the Presence of Periodic Pinning
Ground-state properties of a two-dimensional system of superconducting
vortices in the presence of a periodic array of strong pinning centers are
studied analytically and numerically. The ground states of the vortex system at
different filling ratios are found using a simple geometric argument under the
assumption that the penetration depth is much smaller than the spacing of the
pin lattice. The results of this calculation are confirmed by numerical studies
in which simulated annealing is used to locate the ground states of the vortex
system. The zero-temperature equilibrium magnetization as a function of the
applied field is obtained by numerically calculating the energy of the ground
state for a large number of closely spaced filling ratios. The results show
interesting commensurability effects such as plateaus in the B-H diagram at
simple fractional filling ratios.Comment: 12 pages, 19 figures, submitted for publicatio
Mode locking of vortex matter driven through mesoscopic channels
We investigated the driven dynamics of vortices confined to mesoscopic flow
channels by means of a dc-rf interference technique. The observed mode-locking
steps in the -curves provide detailed information on how the number of rows
and lattice structure in the channel change with magnetic field. Minima in flow
stress occur when an integer number of rows is moving coherently, while maxima
appear when incoherent motion of mixed and row configurations is
predominant. Simulations show that the enhanced pinning at mismatch originates
from quasi-static fault zones with misoriented edge dislocations induced by
disorder in the channel edges.Comment: some minor changes were made, 4 pages, 4 figures, accepted for
publication in Phys. Rev. Let
Incommensuration Effects and Dynamics in Vortex Chains
We examine the motion of one-dimensional (1D) vortex matter embedded in a 2D
vortex system with weak pinning using numerical simulations. We confirm the
conjecture of Matsuda et al. [Science 294, 2136 (2001)] that the onset of the
temperature induced motion of the chain is due to an incommensuration effect of
the chain with the periodic potential created by the bulk vortices. In
addition, under an applied driving force we find a two stage depinning
transition, where the initial depinning of the vortex chain occurs through
soliton like pulses. When an ac drive is added to the dc drive, we observe
phase locking of the moving vortex chain.Comment: 4 pages, 4 postscript figure
Giant vortex state in perforated aluminum microsquares
We investigate the nucleation of superconductivity in a uniform perpendicular
magnetic field H in aluminum microsquares containing a few (2 and 4) submicron
holes (antidots). The normal/superconducting phase boundary T_c(H) of these
structures shows a quite different behavior in low and high fields. In the low
magnetic field regime fluxoid quantization around each antidot leads to
oscillations in T_c(H), expected from the specific sample geometry, and
reminiscent of the network behavior. In high magnetic fields, the T_c(H)
boundaries of the perforated and a reference non-perforated microsquare reveal
cusps at the same values of Phi/Phi_0 (where Phi is the applied flux threading
the total square area and Phi_0 is the superconducting flux quantum), while the
background on T_c(H) becomes quasi-linear, indicating that a giant vortex state
is established. The influence of the actual geometries on T_c(H) is analyzed in
the framework of the linearized Ginzburg-Landau theory.Comment: 14 pages, 6 PS figures, RevTex, accepted for publication in Phys.
Rev.
Magnetic Interactions and Transport in (Ga,Cr)As
The magnetic, transport, and structural properties of (Ga,Cr)As are reported.
Zincblende GaCrAs was grown by low-temperature molecular beam
epitaxy (MBE). At low concentrations, x0.1, the materials exhibit unusual
magnetic properties associated with the random magnetism of the alloy. At low
temperatures the magnetization M(B) increases rapidly with increasing field due
to the alignment of ferromagnetic units (polarons or clusters) having large
dipole moments of order 10-10. A standard model of
superparamagnetism is inadequate for describing both the field and temperature
dependence of the magnetization M(B,T). In order to explain M(B) at low
temperatures we employ a distributed magnetic moment (DMM) model in which
polarons or clusters of ions have a distribution of moments. It is also found
that the magnetic susceptibility increases for decreasing temperature but
saturates below T=4 K. The inverse susceptibility follows a linear-T
Curie-Weiss law and extrapolates to a magnetic transition temperature
=10 K. In magnetotransport measurements, a room temperature resistivity
of =0.1 cm and a hole concentration of cm
are found, indicating that Cr can also act as a acceptor similar to Mn. The
resistivity increases rapidly for decreasing temperature below room
temperature, and becomes strongly insulating at low temperatures. The
conductivity follows exp[-(T/T)] over a large range of
conductivity, possible evidence of tunneling between polarons or clusters.Comment: To appear in PRB 15 Mar 200
Dynamical Phases of Driven Vortices Interacting with Periodic Pinning
The finite temperature dynamical phases of vortices in films driven by a
uniform force and interacting with the periodic pinning potential of a square
lattice of columnar defects are investigated by Langevin dynamics simulations
of a London model. Vortices driven along the [0,1] direction and at densities
for which there are more vortices than columnar defects () are
considered. At low temperatures, two new dynamical phases, elastic flow and
plastic flow, and a sharp transition between them are identified and
characterized according to the behavior of the vortex spatial order, velocity
distribution and frequency-dependent velocity correlationComment: 4 pages with 4 figures. To be published in Phys. Rev. B Rapid
Communication
- …