8,877 research outputs found

    From Hipparcos to Gaia

    Full text link
    The measurement of the positions, distances, motions and luminosities of stars represents the foundations of modern astronomical knowledge. Launched at the end of the eighties, the ESA Hipparcos satellite was the first space mission dedicated to such measurements. Hipparcos improved position accuracies by a factor of 100 compared to typical ground-based results and provided astrometric and photometric multi-epoch observations of 118,000 stars over the entire sky. The impact of Hipparcos on astrophysics has been extremely valuable and diverse. Building on this important European success, the ESA Gaia cornerstone mission promises an even more impressive advance. Compared to Hipparcos, it will bring a gain of a factor 50 to 100 in position accuracy and of a factor of 10,000 in star number, collecting photometric, spectrophotometric and spectroscopic data for one billion celestial objects. During its 5-year flight, Gaia will measure objects repeatedly, up to a few hundred times, providing an unprecedented database to study the variability of all types of celestial objects. Gaia will bring outstanding contributions, directly or indirectly, to most fields of research in astrophysics, such as the study of our Galaxy and of its stellar constituents, the search for planets outside the solar system.Comment: 6 pages. New Horizons in Time Domain Astronomy Proceedings IAU Symposium No. 285, 2012, E. Griffin, B. Hanisch & R. Seaman, ed

    Comparison of Viscosities from the Chapman-Enskog and Relaxation Time Methods

    Full text link
    A quantitative comparison between the results of shear viscosities from the Chapman-Enskog and relaxation time methods is performed for selected test cases with specified elastic differential cross sections: (i) the non-relativistic, relativistic and ultra-relativistic hard sphere gas with angle and energy independent differential cross section, (ii) the Maxwell gas, (iii) chiral pions and (iv) massive pions. Our quantitative results reveal that the extent of agreement (or disagreement) depends very sensitively on the energy dependence of the differential cross sections employed.Comment: Submitted to Cent. Eur. J.Phy

    The association between parenting behavior and somatization in adolescents explained by physiological responses in adolescents

    Get PDF
    Introduction: This study adds to the knowledge on somatization in adolescents by exploring its relation with parenting behavior and the mediating/moderating role of physiological responses in adolescents to parenting behavior. Method: Eighteen adolescents with high and 18 adolescents with low somatization scores and their mothers completed a discussion task, from which observed parenting behavior scores were derived. Skin conductance in adolescents was measured before and during the discussion. Results: For adolescents with high levels of physiological responses, unadaptive parenting was related to a higher chance of high somatization scores. For low physiologically responsive adolescents, the relation between parenting behavior and somatization was not significant. Conclusion: Parenting behavior is not univocally related to somatization in adolescents, but the association depends on physiological responses in adolescents. (C) 2014 Elsevier B.V. All rights reserved

    Correlation effects in bistability at the nanoscale: steady state and beyond

    Get PDF
    The possibility of finding multistability in the density and current of an interacting nanoscale junction coupled to semi-infinite leads is studied at various levels of approximation. The system is driven out of equilibrium by an external bias and the non-equilibrium properties are determined by real-time propagation using both time-dependent density functional theory (TDDFT) and many-body perturbation theory (MBPT). In TDDFT the exchange-correlation effects are described within a recently proposed adiabatic local density approximation (ALDA). In MBPT the electron-electron interaction is incorporated in a many-body self-energy which is then approximated at the Hartree-Fock (HF), second-Born (2B) and GW level. Assuming the existence of a steady-state and solving directly the steady-state equations we find multiple solutions in the HF approximation and within the ALDA. In these cases we investigate if and how these solutions can be reached through time evolution and how to reversibly switch between them. We further show that for the same cases the inclusion of dynamical correlation effects suppresses bistability.Comment: 13 pages, 12 figure

    Hipparcos open clusters and stellar evolution

    Get PDF
    By relying on recently improved Hipparcos parallaxes for the Hyades, Pleiades and Ursa Major clusters we find that stellar models with updated physical inputs nicely reproduce the location in the color magnitude diagram of main sequence stars of different metallicities. Stars in the helium burning phase are also discussed, showing that the luminosity of giants in the Hyades, Praesepe and Ursa Major clusters appears to be in reasonable agreement with theoretical predictions. A short discussion concerning the current evolutionary scenarios closes the paper.Comment: 5 pages, 6 Postscript figures, accepted by MNRA

    Long-Ranged Orientational Order in Dipolar Fluids

    Full text link
    Recently Groh and Dietrich claimed the thermodynamic state of a dipolar fluid depends on the shape of the fluid's container. For example, a homogeneous fluid in a short fat container would phase separate when transferred to a tall skinny container of identical volume and temperature. Their calculation thus lacks a thermodynamic limit. We show that removal of demagnetizing fields restores the true, shape independent, thermodynamic limit. As a consequence, spontaneously magnetized liquids display inhomogeneous magnetization textures.Comment: 3 pages, LaTex, no figures. Submitted as comment to PRL, May 199

    Spin Stiffness in the Hubbard model

    Full text link
    The spin stiffness ρs\rho_{\rm s} of the repulsive Hubbard model that occurs in the hydrodynamic theory of antiferromagnetic spin waves is shown to be the same as the thermodynamically defined stiffness involved in twisting the order parameter. New expressions for ρs\rho_{\rm s} are derived, which enable easier interpretation, and connections with superconducting weight and gauge invariance are discussed.Comment: 21 Pages LaTeX2e, to be published in Journal of Physics
    • 

    corecore