4 research outputs found

    U-SPECT-BioFluo: an integrated radionuclide, bioluminescence, and fluorescence imaging platform

    Get PDF
    Background: In vivo bioluminescence, fluorescence, and single-photon emission computed tomography (SPECT) imaging provide complementary information about biological processes. However, to date these signatures are evaluated separately on individual preclinical systems. In this paper, we introduce a fully integrated bioluminescence-fluorescence-SPECT platform. Next to an optimization in logistics and image fusion, this integration can help improve understanding of the optical imaging (OI) results. Methods: An OI module was developed for a preclinical SPECT system (U-SPECT, MILabs, Utrecht, the Netherlands). The applicability of the module for bioluminescence and fluorescence imaging was evaluated in both a phantom and in an in vivo setting using mice implanted with a 4 T1-luc + tumor. A combination of a fluorescent dye and radioactive moiety was used to directly relate the optical images of the module to the SPECT findings. Bioluminescence imaging (BLI) was compared to the localization of the fluorescence signal in the tumors. Results: Both the phantom and in vivo mouse studies showed that superficial fluorescence signals could be imaged accurately. The SPECT and bioluminescence images could be used to place the fluorescence findings in perspective, e.g. by showing tracer accumulation in non-target organs such as the liver and kidneys (SPECT) and giving a semi-quantitative read-out for tumor spread (bioluminescence). Conclusions: We developed a fully integrated multimodal platform that provides complementary registered imaging of bioluminescent, fluorescent, and SPECT signatures in a single scanning session with a single dose of anesthesia. In our view, integration of these modalities helps to improve data interpretation of optical findings in relation to radionuclide images

    High-resolution imaging and single-cell analysis via laser ablation-inductively coupled plasma-mass spectrometry for the determination of membranous receptor expression levels in breast cancer cell lines using receptor-specific hybrid tracers

    No full text
    This work evaluates the possibility of placement of high-resolution imaging and single-cell analysis via laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) within precision medicine by assessing the suitability of LA-ICP-MS as a micro-analytical technique for the localization and quantification of membranous receptors in heterogeneous cell samples that express both the membrane-bound receptors C-X-C chemokine receptor type 4 (CXCR4) and epidermal growth factor receptor (EGFR). Staining of the breast cancer cell lines MDA-MB-231 X4 and MDA-MB-468 was achieved using receptorspecific hybrid tracers, containing both a fluorophore and a DTPA single-lanthanide chelate. Prior to LA-ICP-MS imaging, fluorescence confocal microscopy (FCM) imaging was performed to localize the receptors, hereby enabling direct comparison. Based on the different expression levels of CXCR4 and EGFR, a distinction could be made between the cell lines using both imaging modalities. Furthermore, FCM and LA-ICP-MS demonstrated complementary characteristics, as a more distinct discrimination could be made between both cell lines based on the EGFR-targeting hybrid tracer via LA-ICP-MS, due to the intrinsic CXCR4-related green fluorescent protein (GFP) signal present in the MDA-MB-231 X4 cells. Employing state-of-the-art LA-ICP-MS instrumentation in bidirectional area scanning mode for subcellular imaging of MDA-MB-231 X4 cells enabled the specific binding of the CXCR4-targeting hybrid tracer to the cell membrane to be clearly demonstrated. The stretching of cells over the glass substrate led to a considerably higher signal response for pixels at the cell edges, relative to the more central pixels. The determination of the expression levels of CXCR4 and EGFR for the MDA-MB-468 cell line was performed using LA-ICP-MS single-cell analysis (sc-LA-ICP-MS) and external calibration, based on the quantitative ablation of Ho-spiked dried gelatin droplet standards. Additionally, a second calibration approach was applied based on spot ablation of highly homogeneous dried gelatin gels in combination with the determination of the ablated volume using atomic force microscopy (AFM) and yielded results which were in good agreement with the expression levels determined via flow cytometry (FC) and mass cytometry (MC). Hybrid tracers enable a direct comparison between (i) FCM and LA-ICP-MS imaging for the evaluation of the microscopic binding pattern and between (ii) FC, MC and sc-LA-ICP-MS for the quantification of receptor expression levels in single cells. (C) 2019 Elsevier B.V. All rights reserved

    Size and affinity kinetics of nanobodies influence targeting and penetration of solid tumours

    No full text
    A compound's intratumoural distribution is an important determinant for the effectiveness of molecular therapy or imaging. Antibodies (Abs), though often used in the design of targeted compounds, struggle to achieve a homogenous distribution due to their large size and bivalent binding mechanism. In contrast, smaller compounds like nanobodies (Nbs) are expected to distribute more homogenously, though this has yet to be demonstrated in vivo at the microscopic level. We propose an intravital approach to evaluate the intratumoural distribution of different fluorescently labeled monomeric and dimeric Nb tracers and compare this with a monoclonal antibody (mAb). Monomeric and dimeric formats of the anti-HER2 (2Rb17c and 2Rb17c-2Rb17c) and control (R3B23 and R3B23-R3B23) Nb, as well as the dimeric monovalent Nb 2Rb17c-R3B23 were generated and fluorescently labeled with a Cy5 fluorophore. The mAb trastuzumab-Cy5 was also prepared. Whole-body biodistribution of all constructs was investigated in mice bearing subcutaneous xenografts (HER2+ SKOV3) using in vivo epi-fluorescence imaging. Next, for intravital experiments, GFP-expressing SKOV3 cells were grown under dorsal window chambers on athymic nude mice (n = 3/group), and imaged under a fluorescence stereo microscope immediately after intravenous injection of the tracers. Consecutive fluorescence images within the tumour were acquired over the initial 20 min after injection and later, single images were taken at 1, 3 and 24 h post-injection. Additionally, two-photon microscopy was used to investigate the colocalization of GFP (tumour cells) and Cy5 fluorescence (tracers) at higher resolution. Whole-body images showed rapid renal clearance of all Nbs, and fast tumour targeting for the specific Nbs. Specific tumour uptake of the mAb could only be clearly distinguished from background after several hours. Intravital imaging revealed that monomeric Nb tracers accumulated rapidly and distributed homogenously in the tumour mere minutes after intravenous injection. The dimeric compounds initially achieved lower fluorescence intensities than the monomeric. Furthermore, whereas the HER2-specific dimeric bivalent compound remained closely associated to the blood vessels over 24 h, the HER2-specific dimeric monovalent tracer achieved a more homogenous tumour distribution from 1 h post-injection onwards. Non-specific tracers were not retained in the tumour. Trastuzumab had the most heterogenous intratumoural distribution of all evaluated compounds, while -due to the long blood retention- achieving the highest overall tumour uptake at 24 h post-injection. In conclusion, monomeric Nbs very quickly and homogenously distribute through tumour tissue, at a rate significantly greater than dimeric Nbs and mAbs. This underlines the potential of monomeric Nb tracers and therapeutics in molecular imaging and targeted therapies.status: publishe
    corecore