11,418 research outputs found

    Validation of the new Hipparcos reduction

    Full text link
    Context.A new reduction of the astrometric data as produced by the Hipparcos mission has been published, claiming accuracies for nearly all stars brighter than magnitude Hp = 8 to be better, by up to a factor 4, than in the original catalogue. Aims.The new Hipparcos astrometric catalogue is checked for the quality of the data and the consistency of the formal errors as well as the possible presence of error correlations. The differences with the earlier publication are explained. Methods. The internal errors are followed through the reduction process, and the external errors are investigated on the basis of a comparison with radio observations of a small selection of stars, and the distribution of negative parallaxes. Error correlation levels are investigated and the reduction by more than a factor 10 as obtained in the new catalogue is explained. Results.The formal errors on the parallaxes for the new catalogue are confirmed. The presence of a small amount of additional noise, though unlikely, cannot be ruled out. Conclusions. The new reduction of the Hipparcos astrometric data provides an improvement by a factor 2.2 in the total weight compared to the catalogue published in 1997, and provides much improved data for a wide range of studies on stellar luminosities and local galactic kinematics.Comment: 12 pages, 19 figures, accepted for publication by Astronomy and Astrophysic

    A fast 2D image reconstruction algorithm from 1D data for the Gaia mission

    Full text link
    A fast 2-dimensional image reconstruction method is presented, which takes as input 1-dimensional data acquired from scans across a central source in different orientations. The resultant reconstructed images do not show artefacts due to non-uniform coverage in the orientations of the scans across the central source, and are successful in avoiding a high background due to contamination of the flux from the central source across the reconstructed image. Due to the weighting scheme employed this method is also naturally robust to hot pixels. This method was developed specifically with Gaia data in mind, but should be useful in combining data with mismatched resolutions in different directions.Comment: accepted (18 pages, 13 figures) will appear in Experimental Astronom

    Towards a new crown indicator: Some theoretical considerations

    Get PDF
    The crown indicator is a well-known bibliometric indicator of research performance developed by our institute. The indicator aims to normalize citation counts for differences among fields. We critically examine the theoretical basis of the normalization mechanism applied in the crown indicator. We also make a comparison with an alternative normalization mechanism. The alternative mechanism turns out to have more satisfactory properties than the mechanism applied in the crown indicator. In particular, the alternative mechanism has a so-called consistency property. The mechanism applied in the crown indicator lacks this important property. As a consequence of our findings, we are currently moving towards a new crown indicator, which relies on the alternative normalization mechanism

    Rivals for the crown: Reply to Opthof and Leydesdorff

    Get PDF
    We reply to the criticism of Opthof and Leydesdorff [arXiv:1002.2769] on the way in which our institute applies journal and field normalizations to citation counts. We point out why we believe most of the criticism is unjustified, but we also indicate where we think Opthof and Leydesdorff raise a valid point

    Rotation periods of late-type stars in the young open cluster IC 2602

    Get PDF
    We present the results of a monitoring campaign aimed at deriving rotation periods for a representative sample of stars in the young (30 Myr) open cluster IC 2602. Rotation periods were derived for 29 of 33 stars monitored. The periods derived range from 0.2d (one of the shortest known rotation periods of any single open cluster star) to about 10d (which is almost twice as long as the longest period previously known for a cluster of this age). We are able to confirm 8 previously known periods and derive 21 new ones, delineating the long period end of the distribution. Despite our sensitivity to longer periods, we do not detect any variables with periods longer than about 10d. The combination of these data with those for IC 2391, an almost identical cluster, leads to the following conclusions: 1) The fast rotators in a 30 Myr cluster are distributed across the entire 0.5 < B-V < 1.6 color range. 2) 6 stars in our sample are slow rotators, with periods longer than 6d. 3) The amplitude of variability depends on both the color and the period. The dependence on the latter might be important in understanding the selection effects in the currently available rotation period database and in planning future observations. 4) The interpretation of these data in terms of theoretical models of rotating stars suggests both that disk-interaction is the norm rather than the exception in young stars and that disk-locking times range from zero to a few Myr.Comment: 23 pages, 8 figures, accepted for publication in the Astrophysical Journa

    Особливості формування етнічного складу селянської верстви Степового Побужжя

    Get PDF
    In this short paper we sketch a brief introduction to our Krimp algorithm. Moreover, we briefly discuss some of the large body of follow up research. Pointers to the relevant papers are provided in the bibliography

    Design and characterization of SiON integrated optics components for optical coherence tomography

    Get PDF
    Optical coherence tomography (OCT) is a technique for high resolution imaging of biological tissues with a depth range of a few millimeters. OCT is based on interferometry to enable depth ranging. Currently, optical components for OCT are rather bulky and expensive; the use of integrated optical circuits presents a great opportunity to reduce costs and enhance system functionality and performance. We present the design and characterization of SiON-based integrated optics waveguides, splitters, couplers and interferometers for OCT operating at a wavelength of 1.3 um
    corecore