2,924 research outputs found

    An ultra-high frequency optomechanical oscillator

    Get PDF

    Analysis of enhanced stimulated Brillouin scattering in silicon slot waveguides

    Get PDF
    Stimulated Brillouin scattering has attracted renewed interest with the promise of highly tailorable integration into the silicon photonics platform. However, significant Brillouin amplification in silicon waveguides has yet to be shown. In an effort to engineer a structure with large photon-phonon coupling, we analyzed both forward and backward Brillouin scattering in high-index-contrast silicon slot waveguides. The calculations predict that gradient forces enhance the Brillouin gain in narrow slots. We estimate a currently feasible gain of about 105W1m110^{5} \, \text{W}^{-1}\text{m}^{-1}, which is an order of magnitude larger than in a stand-alone silicon wire. Such efficient coupling could enable a host of Brillouin technologies on a mass-producible silicon chip

    Aansprakelijkheid van de milieucoördinator

    Get PDF

    Unifying Brillouin scattering and cavity optomechanics

    Full text link
    So far, Brillouin scattering and cavity optomechanics were mostly disconnected branches of research -- although both deal with photon-phonon coupling. This begs for the development of a broader theory that contains both fields. Here, we derive the dynamics of optomechanical cavities from that of Brillouin-active waveguides. This explicit transition elucidates the link between phenomena such as Brillouin amplification and electromagnetically induced transparency. It proves that effects familiar from cavity optomechanics all have traveling-wave partners, but not vice versa. We reveal a close connection between two parameters of central importance in these fields: the Brillouin gain coefficient and the zero-point optomechanical coupling rate. This enables comparisons between systems as diverse as ultracold atom clouds, plasmonic Raman cavities and nanoscale silicon waveguides. In addition, back-of-the-envelope calculations show that unobserved effects, such as photon-assisted amplification of traveling phonons, are now accessible in existing systems. Finally, we formulate both circuit- and cavity-oriented optomechanics in terms of vacuum coupling rates, cooperativities and gain coefficients, thus reflecting the similarities in the underlying physics.Comment: published manuscript, minor change

    Evaluation of the users value of salts against apple scab and powdery mildew for fruit production

    Get PDF
    The research was aimed at finding anti resistance strategies for Integrated fruit growing. As the salts tested may be approvable for organic farming, the trial results are also of value for the development of scab an mildew control strategies for organic fruit growing. As new fungicides are mainly unisite action fungicides, the problem of fungicide resistance development is becoming more important every year. Combining chemical fungicides, which is the best anti-resistance strategy, is not always possible or recommended in the case when the number of available chemical fungicides are limited or a reduction in fungicide use is asked for. Therefore the use of salts as an anti-resistance strategy was looked upon. The salts evaluated were K(HCO3), KH2PO3, KHPO4 and K2SiO3. When using these salts as an anti-resistance strategy the efficacy obtained when spraying the compounds alone was often to low to be used in rotation with chemical fungicides. Only with K(HCO3)2 a good efficacy can be observed in some years. The variation in efficacy with K(HCO3)2 observed is higher for powdery mildew. K(HCO3)2 can be considered as a ideal product for scab control in organic orchards at moments of low infection risk
    corecore