1,050 research outputs found

    A network approach for power grid robustness against cascading failures

    Get PDF
    Cascading failures are one of the main reasons for blackouts in electrical power grids. Stable power supply requires a robust design of the power grid topology. Currently, the impact of the grid structure on the grid robustness is mainly assessed by purely topological metrics, that fail to capture the fundamental properties of the electrical power grids such as power flow allocation according to Kirchhoff's laws. This paper deploys the effective graph resistance as a metric to relate the topology of a grid to its robustness against cascading failures. Specifically, the effective graph resistance is deployed as a metric for network expansions (by means of transmission line additions) of an existing power grid. Four strategies based on network properties are investigated to optimize the effective graph resistance, accordingly to improve the robustness, of a given power grid at a low computational complexity. Experimental results suggest the existence of Braess's paradox in power grids: bringing an additional line into the system occasionally results in decrease of the grid robustness. This paper further investigates the impact of the topology on the Braess's paradox, and identifies specific sub-structures whose existence results in Braess's paradox. Careful assessment of the design and expansion choices of grid topologies incorporating the insights provided by this paper optimizes the robustness of a power grid, while avoiding the Braess's paradox in the system.Comment: 7 pages, 13 figures conferenc

    Structural transition in interdependent networks with regular interconnections

    Get PDF
    Networks are often made up of several layers that exhibit diverse degrees of interdependencies. A multilayer interdependent network consists of a set of graphs GG that are interconnected through a weighted interconnection matrix B B , where the weight of each inter-graph link is a non-negative real number p p . Various dynamical processes, such as synchronization, cascading failures in power grids, and diffusion processes, are described by the Laplacian matrix Q Q characterizing the whole system. For the case in which the multilayer graph is a multiplex, where the number of nodes in each layer is the same and the interconnection matrix B=pI B=pI , being I I the identity matrix, it has been shown that there exists a structural transition at some critical coupling, p∗ p^* . This transition is such that dynamical processes are separated into two regimes: if p>p∗ p > p^* , the network acts as a whole; whereas when p<p∗ p<p^* , the network operates as if the graphs encoding the layers were isolated. In this paper, we extend and generalize the structural transition threshold p∗ p^* to a regular interconnection matrix B B (constant row and column sum). Specifically, we provide upper and lower bounds for the transition threshold p∗ p^* in interdependent networks with a regular interconnection matrix B B and derive the exact transition threshold for special scenarios using the formalism of quotient graphs. Additionally, we discuss the physical meaning of the transition threshold p∗ p^* in terms of the minimum cut and show, through a counter-example, that the structural transition does not always exist. Our results are one step forward on the characterization of more realistic multilayer networks and might be relevant for systems that deviate from the topological constrains imposed by multiplex networks.Comment: 13 pages, APS format. Submitted for publicatio

    A Topological Investigation of Phase Transitions of Cascading Failures in Power Grids

    Full text link
    Cascading failures are one of the main reasons for blackouts in electric power transmission grids. The economic cost of such failures is in the order of tens of billion dollars annually. The loading level of power system is a key aspect to determine the amount of the damage caused by cascading failures. Existing studies show that the blackout size exhibits phase transitions as the loading level increases. This paper investigates the impact of the topology of a power grid on phase transitions in its robustness. Three spectral graph metrics are considered: spectral radius, effective graph resistance and algebraic connectivity. Experimental results from a model of cascading failures in power grids on the IEEE power systems demonstrate the applicability of these metrics to design/optimize a power grid topology for an enhanced phase transition behavior of the system

    Rewarding imperfect performance reduces adaptive changes

    Get PDF
    Could a pat on the back affect motor adaptation? Recent studies indeed suggest that rewards can boost motor adaptation. However, the rewards used were typically reward gradients that carried quite detailed information about performance. We investigated whether simple binary rewards affected how participants learned to correct for a visual rotation of performance feedback in a 3D pointing task. To do so, we asked participants to align their unseen hand with virtual target cubes in alternating blocks with and without spatial performance feedback. Forty participants were assigned to one of two groups: a ‘spatial only’ group, in which the feedback consisted of showing the (perturbed) endpoint of the hand, or to a ‘spatial & reward’ group, in which a reward could be received in addition to the spatial feedback. In addition, six participants were tested in a ‘reward only’ group. Binary reward was given when the participants’ hand landed in a virtual ‘hit area’ that was adapted to individual performance to reward about half the trials. The results show a typical pattern of adaptation in both the ‘spatial only’ and the ‘spatial & reward’ groups, whereas the ‘reward only’ group was unable to adapt. The rewards did not affect the overall pattern of adaptation in the ‘spatial & reward’ group. However, on a trial-by-trial basis, the rewards reduced adaptive changes to spatial errors. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00221-015-4540-1) contains supplementary material, which is available to authorized users

    Alignment to natural and imposed mismatches between the senses

    Get PDF
    Does the nervous system continuously realign the senses so that objects are seen and felt in the same place? Conflicting answers to this question have been given. Research imposing a sensory mismatch has provided evidence that the nervous system realigns the senses to reduce the mismatch. Other studies have shown that when subjects point with the unseen hand to visual targets, their end points show visual-proprioceptive biases that do not disappear after episodes of visual feedback. These biases are indicative of intersensory mismatches that the nervous system does not align for. Here, we directly compare how the nervous system deals with natural and imposed mismatches. Subjects moved a hand-held cube to virtual cubes appearing at pseudorandom locations in threedimensional space. We alternated blocks in which subjects moved without visual feedback of the hand with feedback blocks in which we rendered a cube representing the hand-held cube. In feedback blocks, we rotated the visual feedback by 5° relative to the subject's head, creating an imposed mismatch between vision and proprioception on top of any natural mismatches. Realignment occurred quickly but was incomplete. We found more realignment to imposed mismatches than to natural mismatches. We propose that this difference is related to the way in which the visual information changed when subjects entered the experiment: the imposed mismatches were different from the mismatch in daily life, so alignment started from scratch, whereas the natural mismatches were not imposed by the experimenter, so subjects are likely to have entered the experiment partly aligned. © 2013 the American Physiological Society

    Phosphorus recovered from human excreta: A socio-ecological-technical approach to phosphorus recycling

    Get PDF
    This article provides a comprehensive and cross-disciplinary overview of the phosphorus cycle through the wastewater and agri-food system. While mineral phosphorus stocks are finite, the use of mined phosphorus is accompanied with many losses, leading to pollution of water bodies. Recovering phosphorus from human excreta can contribute to more efficient use of phosphorus to ensure its availability for food production in the future. Phosphorous can be recovered through different recovery technologies and consequently used in agriculture via different recycling routes. Each recycling route has its own particularities in terms of interactions with technologies, actors and the environment to bring the recovered phosphorus back into agriculture. In this literature review, we adopt a socio-ecological-technical approach to map three phosphorus-recycling routes, via municipal sewage sludge, struvite recovered from municipal wastewater and source-separated urine. We firstly show that improvements are still needed in all three routes for achieving high P recovery efficiency, and a combination of these recycling routes are needed to achieve maximum recovery of phosphorus. Second, we identify key issues for each recycling route that currently limit the use of recovered phosphorus in agriculture. We indicate where interaction between disciplines is needed to improve recycling routes and identify gaps in research on how recovered phosphorus accesses agriculture
    • …
    corecore