Cascading failures are one of the main reasons for blackouts in electrical
power grids. Stable power supply requires a robust design of the power grid
topology. Currently, the impact of the grid structure on the grid robustness is
mainly assessed by purely topological metrics, that fail to capture the
fundamental properties of the electrical power grids such as power flow
allocation according to Kirchhoff's laws. This paper deploys the effective
graph resistance as a metric to relate the topology of a grid to its robustness
against cascading failures. Specifically, the effective graph resistance is
deployed as a metric for network expansions (by means of transmission line
additions) of an existing power grid. Four strategies based on network
properties are investigated to optimize the effective graph resistance,
accordingly to improve the robustness, of a given power grid at a low
computational complexity. Experimental results suggest the existence of
Braess's paradox in power grids: bringing an additional line into the system
occasionally results in decrease of the grid robustness. This paper further
investigates the impact of the topology on the Braess's paradox, and identifies
specific sub-structures whose existence results in Braess's paradox. Careful
assessment of the design and expansion choices of grid topologies incorporating
the insights provided by this paper optimizes the robustness of a power grid,
while avoiding the Braess's paradox in the system.Comment: 7 pages, 13 figures conferenc