61 research outputs found

    Recycling endosomes

    Get PDF
    The endocytic and exocytic system is important for cells to communicate with their surroundings. For instance, endocytosis allows the regulated internalisation of receptors (which can be ligand bound or not) into peripheral early endosomes and can thus modulate responses to external stimuli. Internalised molecules can be degraded after entering the late-endosomal/lysosomal pathway or be recycled to the cell surface (Maxfield and McGraw, 2004). Recycling to the cell surface can occur directly from peripheral early endosomes. However, many cells display a distinct subpopulation of endosomes that have a slightly higher pH of ~6.4 and also recycle membrane components. These are typically located deeper in the cell and centered around the microtubule-organising centre (MTOC) (Perret et al., 2005). These so-called recycling endosomes (REs) display a heterogeneous tubular-vesicular morphology, which suggests dynamic and intense trafficking activity, and connect the endocytic pathway to the exocytic pathway (Ang et al., 2004; Lock and Stow, 2005; Murray et al., 2005). The most prominent RE marker to date is the small GTPase Rab11. Studies of the function of Rab11 and the proteins with which it interacts in various experimental systems and organisms suggest that cells use REs for the delivery of membranes to regions of their surface that are subject to dynamic reorganisation, probably through regulated interactions with the exocyst, a multiprotein complex containing the Sec5, Sec6, Sec8, Sec10, Sec15 and Exo70 proteins that is thought to recruit material to areas of membrane growth. Consequently, REs are implicated in the regulation of a variety of cellular processes that depend on such trafficking. Several of these are highlighted in the poster and discussed briefly below. Epithelial cell-cell adhesion E-cadherin-mediated cell-cell adhesion controls epithelial cell polarisation, 1679Cell Science at a Glance (See poster insert

    Fetal Bowel Abnormalities Suspected by Ultrasonography in Microvillus Inclusion Disease:Prevalence and Clinical Significance

    Get PDF
    Microvillus inclusion disease (MVID) is a rare, inherited, congenital, diarrheal disorder that is invariably fatal if left untreated. Within days after birth, MVID presents as a life-threatening emergency characterized by severe dehydration, metabolic acidosis, and weight loss. Diagnosis is cumbersome and can take a long time. Whether MVID could be diagnosed before birth is not known. Anecdotal reports of MVID-associated fetal bowel abnormalities suspected by ultrasonography (that is, dilated bowel loops and polyhydramnios) have been published. These are believed to be rare, but their prevalence in MVID has not been investigated. Here, we have performed a comprehensive retrospective study of 117 published MVID cases spanning three decades. We find that fetal bowel abnormalities in MVID occurred in up to 60% of cases of MVID for which prenatal ultrasonography or pregnancy details were reported. Suspected fetal bowel abnormalities appeared in the third trimester of pregnancy and correlated with postnatal, early-onset diarrhea and case-fatality risk during infancy. Fetal bowel dilation correlated with MYO5B loss-of-function variants. In conclusion, MVID has already started during fetal life in a significant number of cases. Genetic testing for MVID-causing gene variants in cases where fetal bowel abnormalities are suspected by ultrasonography may allow for the prenatal diagnosis of MVID in a significant percentage of cases, enabling optimal preparation for neonatal intensive care

    Mechanisms behind the polarized distribution of lipids in epithelial cells

    Get PDF
    Epithelial cells are polarized cells and typically display distinct plasma membrane domains: basal plasma membrane domains face the underlying tissue, lateral domains contact adjacent cells and apical domains face the exterior lumen. Each membrane domain is endowed with a specific macromolecular composition that constitutes the functional identity of that domain. Defects in apical-basal plasma membrane polarity altogether or more subtle defects in the composition of either apical or basal plasma membrane domain can give rise to severe diseases. Lipids are the main component of cellular membranes and mechanisms that control their polarized distribution in epithelial cells are emerging. In particular sphingolipids and phosphatidylinositol lipids have taken center stage in the organization of the apical and basolateral plasma membrane domain. This short review article discusses mechanisms that contribute to the polarized distribution of lipids in epithelial cells

    The subapical compartment:a traffic center in membrane polarity development

    Get PDF
    Spatially separated apical and basolateral plasma membrane domains that have distinct functions and molecular compositions are a characteristic feature of epithelial cell polarity. The subapical compartment (SAC), also known as the common endosome (CE), where endocytic pathways from both surfaces merge, plays a crucial role in the maintenance and probably the biogenesis of these distinct membrane domains. Although differences in morphology are apparent, the same principal features of a SAC can be distinguished in different types of epithelial cells. As polarity develops, the compartment acquires several distinct machineries that, in conjunction with the cytoskeleton, are necessary for polarized trafficking. Disrupting trafficking via the SAC and hence bypassing its sorting machinery, as occurs upon actin depolymerization, leads to mis-sorting of apical and basolateral molecules, thereby compromising the development of polarity. The structural and functional integrity of the compartment in part depends on microtubules. Moreover, the acquisition of a particular set of Rab proteins, including Rab11 and Rab3, appears to be crucial in regulating molecular sorting and vesicular transport relevant both to recycling to either plasma membrane domain and to de novo assembly of the apical domain. Furthermore, subcompartmentalization of the SAC appears to be key to its various functions

    A Functional Relationship Between UNC45A and MYO5B Connects Two Rare Diseases With Shared Enteropathy

    Get PDF
    BACKGROUND & AIMS: UNC45A is a myosin (co-)chaperone, and mutations in the UNC45A gene were recently identified in osteo-oto-hepato-enteric (O2HE) syndrome patients presenting with congenital diarrhea and intrahepatic cholestasis. Congenital diarrhea and intrahepatic cholestasis are also the prime symptoms in patients with microvillus inclusion disease (MVID) and mutations in MYO5B, encoding the recycling endosome-associated myosin Vb. The aim of this study was to determine whether UNC45A and myosin Vb are functionally linked. METHODS: CRISPR-Cas9 gene editing and site-directed mutagenesis were performed with intestinal epithelial and hepatocellular cell lines, followed by Western blotting, quantitative polymerase chain reaction, and scanning electron and/or confocal fluorescence microscopy to determine the relationship between (mutants of) UNC45A and myosin Vb. RESULTS: UNC45A depletion in intestinal and hepatic cells reduced myosin Vb protein expression, and in intestinal epithelial cells, it affected 2 myosin Vb-dependent processes that underlie MVID pathogenesis: rat sarcoma-associated binding protein (RAB)11A-positve recycling endosome positioning and microvilli development. Reintroduction of UNC45A in UNC45A-depleted cells restored myosin Vb expression, and reintroduction of UNC45A or myosin Vb, but not the O2HE patient UNC45A-c.1268T>A variant, restored recycling endosome positioning and microvilli development. The O2HE patient-associated p.V423D substitution, encoded by the UNC45A-c.1268T>A variant, impaired UNC45A protein stability but as such not the ability of UNC45A to promote myosin Vb expression and microvilli development. CONCLUSIONS: A functional relationship exists between UNC45A and myosin Vb, thereby connecting 2 rare congenital diseases with overlapping enteropathy at the molecular level. Protein instability rather than functional impairment underlies the pathogenicity of the O2HE syndrome-associated UNC45A-p.V423D mutation

    Unequal Effects of Myosin 5B Mutations in Liver and Intestine Determine the Clinical Presentation of Low-Gamma-Glutamyltransferase Cholestasis

    Get PDF
    Mutations in the MYO5B gene cause in some patients low gamma-glutamyltransferase (low-GGT) cholestatic liver disease (CLD) and in other patients microvillus inclusion disease (MVID, a congenital diarrheal and malabsorption disorder). Overlap of symptoms occurs but more MVID patients present cholestasis than CLD patients present diarrhea. Clinical observations indicate that MYO5B mutations can cause but also protect against CLD. This complicates family counseling and therapeutic decisions. Here we have reviewed the literature on MYO5B mutations in relation to CLD. It appears that variations in the clinical presentation of low-GGT CLD can be attributed to the coincident expression but unequal effects of MYO5B mutations in hepatocytes versus enterocytes, two cell types that jointly constitute the core of the enterohepatic circulation. Therefore, contrasting other low-GGT CLDs, those associated with MYO5B mutations should be viewed as a disease of the enterohepatic circulation rather than solely of the liver

    Pharmacological and Parenteral Nutrition-Based Interventions in Microvillus Inclusion Disease

    Get PDF
    Microvillus inclusion disease (MVID) is a rare inherited and invariably fatal enteropathy, characterized by severe intractable secretory diarrhea and nutrient malabsorption. No cure exists, and patients typically die during infancy because of treatment-related complications. The need for alternative treatment strategies is evident. Several pharmacological interventions with variable successes have been tried and reported for individual patients as part of their clinical care. Unfortunately, these interventions and their outcomes have remained hidden in case reports and have not been reviewed. Further, recent advances regarding MVID pathogenesis have shed new light on the outcomes of these pharmacological interventions and offer suggestions for future clinical research and trials. Hence, an inventory of reported pharmacological interventions in MVID, their rationales and outcomes, and a discussion of these in the light of current knowledge is opportune. Together with a discussion on MVID-specific pharmacokinetic, -dynamic, and -genetic concerns that pose unique challenges regarding pharmacological strategies, we envision that this paper will aid researchers and clinicians in their efforts to develop pharmacological interventions to combat this devastating disease

    Polarization restricts hepatitis C virus entry into HepG2 hepatoma cells

    Get PDF
    The primary reservoir for hepatitis C virus (HCV) replication is believed to be hepatocytes, which are highly polarized with tight junctions (TJ) separating their basolateral and apical domains. HepG2 cells develop polarity over time, resulting in the formation and remodeling of bile canalicular (BC) structures. HepG2 cells expressing CD81 provide a model system to study the effects of hepatic polarity on HCV infection. We found an inverse association between HepG2-CD81 polarization and HCV pseudoparticle entry. As HepG2 cells polarize, discrete pools of claudin-1 (CLDN1) at the TJ and basal/lateral membranes develop, consistent with the pattern of receptor staining observed in liver tissue. The TJ and nonjunctional pools of CLDN1 show an altered association with CD81 and localization in response to the PKA antagonist Rp-8-Br-cyclic AMPs (cAMPs). Rp-8-Br-cAMPs reduced CLDN1 expression at the basal membrane and inhibited HCV infection, supporting a model where the nonjunctional pools of CLDN1 have a role in HCV entry. Treatment of HepG2 cells with proinflammatory cytokines, tumor necrosis factor alpha and gamma interferon, perturbed TJ integrity but had minimal effect(s) on cellular polarity and HCV infection, suggesting that TJ integrity does not limit HCV entry into polarized HepG2 cells. In contrast, activation of PKC with phorbol ester reduced TJ integrity, ablated HepG2 polarity, and stimulated HCV entry. Overall, these data show that complex hepatocyte-like polarity alters CLDN1 localization and limits HCV entry, suggesting that agents which disrupt hepatocyte polarity may promote HCV infection and transmission within the liver

    Par1b induces asymmetric inheritance of plasma membrane domains via LGN-dependent mitotic spindle orientation in proliferating hepatocytes

    Get PDF
    The development and maintenance of polarized epithelial tissue requires a tightly controlled orientation of mitotic cell division relative to the apical polarity axis. Hepatocytes display a unique polarized architecture. We demonstrate that mitotic hepatocytes asymmetrically segregate their apical plasma membrane domain to the nascent daughter cells. The non-polarized nascent daughter cell can form a de novo apical domain with its new neighbor. This asymmetric segregation of apical domains is facilitated by a geometrically distinct “apicolateral” subdomain of the lateral surface present in hepatocytes. The polarity protein partitioning-defective 1/microtubule-affinity regulating kinase 2 (Par1b/MARK2) translates this positional landmark to cortical polarity by promoting the apicolateral accumulation of Leu-Gly-Asn repeat-enriched protein (LGN) and the capture of nuclear mitotic apparatus protein (NuMA)–positive astral microtubules to orientate the mitotic spindle. Proliferating hepatocytes thus display an asymmetric inheritance of their apical domains via a mechanism that involves Par1b and LGN, which we postulate serves the unique tissue architecture of the developing liver parenchyma

    Loss of MYO5B expression deregulates late endosome size which hinders mitotic spindle orientation

    Get PDF
    Recycling endosomes regulate plasma membrane recycling. Recently, recycling endosome-associated proteins have been implicated in the positioning and orientation of the mitotic spindle and cytokinesis. Loss of MYO5B, encoding the recycling endosome-associated myosin Vb, is associated with tumor development and tissue architecture defects in the gastrointestinal tract. Whether loss of MYO5B expression affects mitosis is not known. Here, we demonstrate that loss of MYO5B expression delayed cytokinesis, perturbed mitotic spindle orientation, led to the misorientation of the plane of cell division during the course of mitosis, and resulted in the delamination of epithelial cells. Remarkably, the effects on spindle orientation, but not cytokinesis, were a direct consequence of physical hindrance by giant late endosomes, which were formed in a chloride channel-sensitive manner concomitant with a redistribution of chloride channels from the cell periphery to late endosomes upon loss of MYO5B. Rab7 availability was identified as a limiting factor for the development of giant late endosomes. In accordance, increasing rab7 availability corrected mitotic spindle misorientation and cell delamination in cells lacking MYO5B expression. In conclusion, we identified a novel role for MYO5B in the regulation of late endosome size control and identify the inability to control late endosome size as an unexpected novel mechanism underlying defects in cell division orientation and epithelial architecture. Loss of the recycling endosome-associated motor protein myosin Vb causes the formation of giant late endo-lysosomes; these in turn hinder the orientation of the mitotic spindle and chromosome segregation. Deregulated endosome size thus hampers faithful cell division
    corecore