598 research outputs found

    Ballistic Composite Fermions in Semiconductor Nanostructures

    Full text link
    We report the results of two fundamental transport measurements at a Landau level filling factor ν\nu of 1/2. The well known ballistic electron transport phenomena of quenching of the Hall effect in a mesoscopic cross-junction and negative magnetoresistance of a constriction are observed close to B~=~0 and ν = 1/2\nu~=~ 1/2. The experimental results demonstrate semi-classical charge transport by composite fermions, which consist of electrons bound to an even number of flux quanta.Comment: 9 pages TeX 3.1415 C version 6.1, 3 PostScript figure

    Evidence for a colour dependence in the size distribution of main belt asteroids

    Get PDF
    We present the results of a project to detect small (~1 km) main-belt asteroids with the 3.6 meter Canada-France-Hawaii Telescope (CFHT). We observed in 2 filters (MegaPrime g' and r') in order to compare the results in each band. Owing to the observational cadence we did not observe the same asteroids through each filter and thus do not have true colour information. However strong differences in the size distributions as seen in the two filters point to a colour-dependence at these sizes, perhaps to be expected in this regime where asteroid cohesiveness begins to be dominated by physical strength and composition rather than by gravity. The best fit slopes of the cumulative size distributions (CSDs) in both filters tend towards lower values for smaller asteroids, consistent with the results of previous studies. In addition to this trend, the size distributions seen in the two filters are distinctly different, with steeper slopes in r' than in g'. Breaking our sample up according to semimajor axis, the difference between the filters in the inner belt is found to be somewhat less pronounced than in the middle and outer belt, but the CSD of those asteroids seen in the r' filter is consistently and significantly steeper than in g' throughout. The CSD slopes also show variations with semimajor axis within a given filter, particularly in r'. We conclude that the size distribution of main belt asteroids is likely to be colour dependent at kilometer sizes and that this dependence may vary across the belt.Comment: 28 pages, 5 figures, submitted to the Astronomical Journa

    Wigner Crystal in One Dimension

    Full text link
    A one--dimensional gas of electrons interacting with long--range Coulomb forces (V(r)1/rV(r) \approx 1/r) is investigated. The excitation spectrum consists of separate collective charge and spin modes, with the charge excitation energies in agreement with RPA calculations. For arbitrarily weak Coulomb repulsion density correlations at wavevector 4kF4k_F decay extremely slowly and are best described as those of a one--dimensional Wigner crystal. Pinning of the Wigner crystal then leads to the nonlinear transport properties characteristic of CDW. The results allow a consistent interpretation of the plasmon and spin excitations observed in one--dimensional semiconductor structures, and suggest an interpretation of some of the observed features in terms of ``spinons''. A possible explanation for nonlinear transport phenomena is given.Comment: 10 pages, RevTe

    Analysis of the temperature-dependent quantum point contact conductance in view of the metal-insulator transition in two dimensions

    Full text link
    The temperature dependence of the conductance of a quantum point contact has been measured. The conductance as a function of the Fermi energy shows temperature-independent fixed points, located at roughly multiple integers of e2/he^{2}/h. Around the first fixed point at e2^{2}/h, the experimental data for different temperatures can been scaled onto a single curve. For pure thermal smearing of the conductance steps, a scaling parameter of one is expected. The measured scaling parameter, however, is significantly larger than 1. The deviations are interpreted as a signature of the potential landscape of the quantum point contact, and of the source-drain bias voltage. We relate our results phenomenologically to the metal-insulator transition in two dimensions.Comment: 5 pages, 3 figure

    Расчёт напряженно-деформированного состояния виброизоляторов сложной формы

    Get PDF
    Розглянуто пружно-деформований стан гумових віброізоляторів з урахуванням контактної взаємодії з деталями конструкції.Stress-strain state of rubber vibroinsulators is considered, taking into account contact interaction with construction parts

    Correlation and symmetry effects in transport through an artificial molecule

    Full text link
    Spectral weights and current-voltage characteristics of an artificial diatomic molecule are calculated, considering cases where the dots connected in series are in general different. The spectral weights allow us to understand the effects of correlations, their connection with selection rules for transport, and the role of excited states in the experimental conductance spectra of these coupled double dot systems (DDS). An extended Hubbard Hamiltonian with varying interdot tunneling strength is used as a model, incorporating quantum confinement in the DDS, interdot tunneling as well as intra- and interdot Coulomb interactions. We find that interdot tunneling values determine to a great extent the resulting eigenstates and corresponding spectral weights. Details of the state correlations strongly suppress most of the possible conduction channels, giving rise to effective selection rules for conductance through the molecule. Most states are found to make insignificant contributions to the total current for finite biases. We find also that the symmetry of the structure is reflected in the I-V characteristics, and is in qualitative agreement with experiment.Comment: 25 figure files - REVTEX - submitted to PR

    Two-photon speckle as a probe of multi-dimensional entanglement

    Get PDF
    We calculate the statistical distribution P_2(I_2) of the speckle pattern produced by a photon pair current I_2 transmitted through a random medium, and compare with the single-photon speckle distribution P_1(I_1). We show that the purity Tr rho^2 of a two-photon density matrix rho can be directly extracted from the first two moments of P_1 and P_2. A one-to-one relationship is derived between P_1 and P_2 if the photon pair is in an M-dimensional entangled pure state. For M>>1 the single-photon speckle disappears, while the two-photon speckle acquires an exponential distribution. The exponential distribution transforms into a Gaussian if the quantum entanglement is degraded to a classical correlation of M>>1 two-photon states. Two-photon speckle can therefore discriminate between multi-dimensional quantum and classical correlations.Comment: 5 pages, 2 figure

    Multiple Projection Optical Diffusion Tomography with Plane Wave Illumination

    Full text link
    We describe a new data collection scheme for optical diffusion tomography in which plane wave illumination is combined with multiple projections in the slab imaging geometry. Multiple projection measurements are performed by rotating the slab around the sample. The advantage of the proposed method is that the measured data can be much more easily fitted into the dynamic range of most commonly used detectors. At the same time, multiple projections improve image quality by mutually interchanging the depth and transverse directions, and the scanned (detection) and integrated (illumination) surfaces. Inversion methods are derived for image reconstructions with extremely large data sets. Numerical simulations are performed for fixed and rotated slabs

    Kondo resonance effect on persistent currents through a quantum dot in a mesoscopic ring

    Full text link
    The persistent current through a quantum dot inserted in a mesoscopic ring of length L is studied. A cluster representing the dot and its vicinity is exactly diagonalized and embedded into the rest of the ring. The Kondo resonance provides a new channel for the current to flow. It is shown that due to scaling properties, the persistent current at the Kondo regime is enhanced relative to the current flowing either when the dot is at resonance or along a perfect ring of same length. In the Kondo regime the current scales as L1/2L^{-1/2}, unlike the L1L^{-1} scaling of a perfect ring. We discuss the possibility of detection of the Kondo effect by means of a persistent current measurement.Comment: 11 pages, 3 Postscript figure

    Periodic magnetoconductance fluctuations in triangular quantum dots in the absence of selective probing

    Full text link
    We have studied the magnetoconductance of quantum dots with triangular symmetry and areas down to 0.2 square microns, made in a high mobility two-dimensional electron gas embedded in a GaAs-AlGaAs heterostructure. Semiclassical simulations show that the gross features in the measured magnetoconductance are caused by ballistic effects. Below 1 K we observe a strong periodic oscillation, which may be explained in terms of the Aharanov-Bohm flux quantization through the area of a single classical periodic orbit. From a numerical and analytical analysis of possible trajectories in hard- and soft-walled potentials, we identify this periodic orbit as the enscribed triangle. Contrary to other recent experiments, this orbit is not accessible by classical processes for the incoming collimated beam.Comment: RevTex 8 pages, including 5 postscript figure
    corecore