28 research outputs found

    Optimizing dual energy cone beam CT protocols for preclinical imaging and radiation research

    Get PDF
    Objective: The aim of this work was to investigate whether quantitative dual-energy CT (DECT) imaging is feasible for small animal irradiators with an integrated cone-beam CT (CBCT) system. Methods: The optimal imaging protocols were determined by analyzing different energy combinations and dose levels. The influence of beam hardening effects and the performance of a beam hardening correction (BHC) were investigated. In addition, two systems from different manufacturers were compared in terms of errors in the extracted effective atomic numbers (Z(eff)) and relative electron densities (rho(e)) for phantom inserts with known elemental compositions and relative electron densities. Results: The optimal energy combination was determined to be 50 and 90kVp. For this combination, Z(eff) and r rho(e) can be extracted with a mean error of 0.11 and 0.010, respectively, at a dose level of 60cGy. Conclusion: Quantitative DECT imaging is feasible for small animal irradiators with an integrated CBCT system. To obtain the best results, optimizing the imaging protocols is required. Well-separated X-ray spectra and a sufficient dose level should be used to minimize the error and noise for Z(eff) and rho(e). When no BHC is applied in the image reconstruction, the size of the calibration phantom should match the size of the imaged object to limit the influence of beam hardening effects. No significant differences in Z(eff) and rho(e) errors are observed between the two systems from different manufacturers. Advances in knowledge: This is the first study that investigates quantitative DECT imaging for small animal irradiators with an integrated CBCT system

    An orthotopic non-small cell lung cancer model for image-guided small animal radiotherapy platforms

    Get PDF
    Objective: Lung cancer is the deadliest cancer worldwide. To increase treatment potential for lung cancer, pre-clinical models that allow testing and follow up of clinically relevant treatment modalities are essential. Therefore, we developed a single-nodule-based orthotopic non-small cell lung cancer tumor model which can be monitored using multimodal non-invasive imaging to select the optimal image-guided radiation treatment plan. Methods: An orthotopic non-small cell lung cancer model in NMRI-nude mice was established to investigate the complementary information acquired from 80 kVp microcone-beam CT (micro-CBCT) and bioluminescence imaging (BLI) using different angles and filter settings. Different micro-CBCT-based radiation-delivery plans were evaluated based on their dose-volume histogram metrics of tumor and organs at risk to select the optimal treatment plan. Results: H1299 cell suspensions injected directly into the lung render exponentially growing single tumor nodules whose CBCT-based volume quantification strongly correlated with BLI-integrated intensity. Parallel-opposed single angle beam plans through a single lung are preferred for smaller tumors, whereas for larger tumors, plans that spread the radiation dose across healthy tissues are favored. Conclusions: Closely mimicking a clinical setting for lung cancer with highly advanced preclinical radiation treatment planning is possible in mice developing orthotopic lung tumors. Advances in knowledge: BLI and CBCT imaging of orthotopic lung tumors provide complementary information in a temporal manner. The optimal radiotherapy plan is tumor volume-dependent

    Allele-Specific HLA Loss and Immune Escape in Lung Cancer Evolution

    Get PDF
    Immune evasion is a hallmark of cancer. Losing the ability to present neoantigens through human leukocyte antigen (HLA) loss may facilitate immune evasion. However, the polymorphic nature of the locus has precluded accurate HLA copy-number analysis. Here, we present loss of heterozygosity in human leukocyte antigen (LOHHLA), a computational tool to determine HLA allele-specific copy number from sequencing data. Using LOHHLA, we find that HLA LOH occurs in 40% of non-small-cell lung cancers (NSCLCs) and is associated with a high subclonal neoantigen burden, APOBEC-mediated mutagenesis, upregulation of cytolytic activity, and PD-L1 positivity. The focal nature of HLA LOH alterations, their subclonal frequencies, enrichment in metastatic sites, and occurrence as parallel events suggests that HLA LOH is an immune escape mechanism that is subject to strong microenvironmental selection pressures later in tumor evolution. Characterizing HLA LOH with LOHHLA refines neoantigen prediction and may have implications for our understanding of resistance mechanisms and immunotherapeutic approaches targeting neoantigens. Video Abstract [Figure presented] Development of the bioinformatics tool LOHHLA allows precise measurement of allele-specific HLA copy number, improves the accuracy in neoantigen prediction, and uncovers insights into how immune escape contributes to tumor evolution in non-small-cell lung cancer

    Dose painting by dynamic irradiation delivery on an image-guided small animal radiotherapy platform

    No full text
    Objective: Using synchronized three-dimensional stage translation and multiangle radiation delivery to improve conformality and homogeneity of radiation delivery to complexly shaped target volumes for precision preclinical radiotherapy. Methods: A CT image of a mouse was used to design irradiation plans to target the spinal cord and an orthotopic lung tumour. A dose painting method is proposed that combines heterogeneous two-dimensional area irradiations from multiple beam directions. For each beam direction, a two-dimensional area was defined based on the projection of the target volume. Each area was divided into many single beam Monte Carlo simulations, based on radiochromic film characterization of a 2.4 mm beam of a commercial precision image-guided preclinical irradiation platform. Beam-on time optimization including all simulated beams from multiple beam directions was used to achieve clinically relevant irradiation objects. Dose painting irradiation plans were compared to irradiation plans using a fixed aperture and rotatable variable aperture collimator. Results: Irradiation plans for the proposed dose painting approach achieved good target coverage, similar dose to avoidance structures in comparison with irradiation using a rotatable variable aperture collimator, and considerably less dose to avoidance volumes in comparison with irradiation using a non-rotatable fixed aperture collimator. Required calculations and beam-on times were considerably longer for the dose painting method. Conclusion: It was shown that the proposed dose painting strategy is a valuable extension to increase the versatility of current generation precision preclinical radiotherapy platforms. More conformal and homogeneous dose delivery may be achieved at the cost of increased radiation planning and delivery duration. Advances in knowledge: More advanced radiation planning for image-guided preclinical radiotherapy platforms can improve target dose conformality and homogeneity with the use of optimized dynamic irradiations with synchronized couch translation. The versatility of these platforms can be increased without hardware modifications

    The influence of respiratory motion on dose delivery in a mouse lung tumour irradiation using the 4D MOBY phantom

    No full text
    OBJECTIVE: During precision irradiation of a preclinical lung tumour model, the tumour is subject to breathing motion and it can partially move out of the irradiation field. This work aimed to perform a quantitative analysis of the impact of respiratory motion on a mouse lung tumour irradiation with small fields. METHODS: A four-dimensional digital mouse whole body phantom (MOBY) with a virtual 4-mm spherical lung tumour at different locations in both lungs is used to simulate a breathing anaesthetized mouse in different breathing phases representing a full breathing cycle. The breathing curve is determined by fluoroscopic imaging of an anaesthetized mouse. Each MOBY time frame is loaded in a dedicated treatment planning system (small animal radiotherapy-Plan) and is irradiated by a full arc with a 5-mm circular collimator. Mean and time-dependent organ doses are calculated for the tumour, heart and spinal cord. RESULTS: Depending on the location of the lung tumour, an overestimation of the mean tumour dose up to 11% is found. The mean heart dose could be both overestimated or underestimated because the heart moves in or out of the irradiation field depending on the beam target location. The respiratory motion does not affect the mean spinal cord dose. A dose gradient is visible in the time-dependent tumour dose distribution. CONCLUSION: In the future, new methods need to be developed to track the lung tumour motion before preclinical irradiation to adjust the irradiation plan. Margins, collimator diameter and target dose could be changed easily, but they all have their drawbacks. State-of-the-art clinical techniques such as respiratory gating or motion tracking may offer a solution for the cold spots in the time-dependent tumour dose. Advances in knowledge: A suitable method is found to quantify changes in organ dose due to respiratory motion in mouse lung tumour image-guided precision irradiation

    Evaluation of a novel triple-channel radiochromic film analysis procedure using EBT2

    No full text
    A novel approach to read out radiochromic film was introduced recently by the manufacturer of GafChromic film. In this study, the performance of this triple-channel film dosimetry method was compared against the conventional single-red-channel film dosimetry procedure, with and without inclusion of a pre-irradiation (pre-IR) film scan, using EBT2 film and kilo-and megavoltage photon beams up to 10 Gy. When considering regions of interest averaged doses, the triple-channel method and both single-channel methods produced equivalent results. Absolute dose discrepancies between the triple-channel method, both single-channel methods and the treatment planning system calculated dose values, were no larger than 5 cGy for dose levels up to 2.2 Gy. Signal to noise in triple-channel dose images was found to be similar to signal to noise in single-channel dose images. The accuracy of resulting dose images from the triple-and single-channel methods with inclusion of pre-IR film scan was found to be similar. Results of a comparison of EBT2 data from a kilovoltage depth dose experiment to corresponding Monte Carlo depth dose data produced dose discrepancies of 9.5 +/- 12 cGy and 7.6 +/- 6 cGy for the single-channel method with inclusion of a pre-IR film scan and the triple-channel method, respectively. EBT2 showed to be energy sensitive at low kilovoltage energies with response differences of 11.9% and 15.6% in the red channel at 2 Gy between 50-225 kVp and 80-225 kVp photon spectra, respectively. We observed that the triple-channel method resulted in non-uniformity corrections of +/- 1% and consistency values of 0-3 cGy for the batches and dose levels studied. Results of this study indicate that the triple-channel radiochromic film read-out method performs at least as well as the single-channel method with inclusion of a pre-IR film scan, reduces film non-uniformity and saves time with elimination of a pre-IR film scan

    Evaluation of a novel triple-channel radiochromic film analysis procedure using EBT2

    No full text
    A novel approach to read out radiochromic film was introduced recently by the manufacturer of GafChromic film. In this study, the performance of this triple-channel film dosimetry method was compared against the conventional single-red-channel film dosimetry procedure, with and without inclusion of a pre-irradiation (pre-IR) film scan, using EBT2 film and kilo-and megavoltage photon beams up to 10 Gy. When considering regions of interest averaged doses, the triple-channel method and both single-channel methods produced equivalent results. Absolute dose discrepancies between the triple-channel method, both single-channel methods and the treatment planning system calculated dose values, were no larger than 5 cGy for dose levels up to 2.2 Gy. Signal to noise in triple-channel dose images was found to be similar to signal to noise in single-channel dose images. The accuracy of resulting dose images from the triple-and single-channel methods with inclusion of pre-IR film scan was found to be similar. Results of a comparison of EBT2 data from a kilovoltage depth dose experiment to corresponding Monte Carlo depth dose data produced dose discrepancies of 9.5 +/- 12 cGy and 7.6 +/- 6 cGy for the single-channel method with inclusion of a pre-IR film scan and the triple-channel method, respectively. EBT2 showed to be energy sensitive at low kilovoltage energies with response differences of 11.9% and 15.6% in the red channel at 2 Gy between 50-225 kVp and 80-225 kVp photon spectra, respectively. We observed that the triple-channel method resulted in non-uniformity corrections of +/- 1% and consistency values of 0-3 cGy for the batches and dose levels studied. Results of this study indicate that the triple-channel radiochromic film read-out method performs at least as well as the single-channel method with inclusion of a pre-IR film scan, reduces film non-uniformity and saves time with elimination of a pre-IR film scan

    The impact of dual energy CT imaging on dose calculations for pre-clinical studies

    No full text
    Abstract Background To investigate the feasibility of using dual-energy CT (DECT) for tissue segmentation and kilovolt (kV) dose calculations in pre-clinical studies and assess potential dose calculation accuracy gain. Methods Two phantoms and an ex-vivo mouse were scanned in a small animal irradiator with two distinct energies. Tissue segmentation was performed with the single-energy CT (SECT) and DECT methods. A number of different material maps was used. Dose calculations were performed to verify the impact of segmentations on the dose accuracy. Results DECT showed better overall results in comparison to SECT. Higher number of DECT segmentation media resulted in smaller dose differences in comparison to the reference. Increasing the number of materials in the SECT method yielded more instability. Both modalities showed a limit to which adding more materials with similar characteristics ceased providing better segmentation results, and resulted in more noise in the material maps and the dose distributions. The effect was aggravated with a decrease in beam energy. For the ex-vivo specimen, the choice of only one high dense bone for the SECT method resulted in large volumes of tissue receiving high doses. For the DECT method, the choice of more than one kind of bone resulted in lower dose values for the different tissues occupying the same volume. For the organs at risk surrounded by bone, the doses were lower when using the SECT method in comparison to DECT, due to the high absorption of the bone. SECT material segmentation may lead to an underestimation of the dose to OAR in the proximity of bone. Conclusions The DECT method enabled the selection of a higher number of materials thereby increasing the accuracy in dose calculations. In phantom studies, SECT performed best with three materials and DECT with seven for the phantom case. For irradiations in preclinical studies with kV photon energies, the use of DECT segmentation combined with the choice of a low-density bone is recommended

    On the determination of planning target margins due to motion for mice lung tumours using a four-dimensional MOBY phantom

    No full text
    OBJECTIVE: This work aims to analyse the effect of respiratory motion on optimal irradiation margins for murine lung tumour models. METHODS: Four-dimensional mathematical phantoms with different lung tumour locations affected by respiratory motion were created. Two extreme breathing curves were adopted and divided into time-points. Each time-point was loaded in a treatment planning system and Monte Carlo (MC) dose calculations were performed for a 360 degrees arc plan. A time-resolved dose was derived, considering the gantry rotation and the breathing motion. Radiotherapy metrics were derived to assess the final treatment plans. An interpolation function was investigated to reduce calculation cost. RESULTS: The effect of respiratory motion on the treatment plan quality is strongly dependent on the breathing pattern and the tumour position. Tumours located closer to the diaphragm required a compromise between tumour conformity and healthy tissue damage. A recipe, which considers collimator size, was proposed to derive tumour margins and spare the organs at risk (OARs) by respecting constraints on user-defined metrics. CONCLUSION: It is recommended to add a target margin, especially on sites where movement is substantial. A simple recipe to derive tumour margins was developed. ADVANCES IN KNOWLEDGE: This work is a first step towards a standard planning target volume concept in pre-clinical radiotherapy
    corecore