9 research outputs found

    GaitSmart motion analysis compared to commonly used function outcome measures in the IMI-APPROACH knee osteoarthritis cohort

    Get PDF
    [Abstract] Background: There are multiple measures for assessment of physical function in knee osteoarthritis (OA), but each has its strengths and limitations. The GaitSmart® system, which uses inertial measurement units (IMUs), might be a user-friendly and objective method to assess function. This study evaluates the validity and responsiveness of GaitSmart® motion analysis as a function measurement in knee OA and compares this to Knee Injury and Osteoarthritis Outcome Score (KOOS), Short Form 36 Health Survey (SF-36), 30s chair stand test, and 40m self-paced walk test. Methods: The 2-year Innovative Medicines Initiative-Applied Public-Private Research enabling OsteoArthritis Clinical Headway (IMI-APPROACH) knee OA cohort was conducted between January 2018 and April 2021. For this study, available baseline and 6 months follow-up data (n = 262) was used. Principal component analysis was used to investigate whether above mentioned function instruments could represent one or more function domains. Subsequently, linear regression was used to explore the association between GaitSmart® parameters and those function domains. In addition, standardized response means, effect sizes and t-tests were calculated to evaluate the ability of GaitSmart® to differentiate between good and poor general health (based on SF-36). Lastly, the responsiveness of GaitSmart® to detect changes in function was determined. Results: KOOS, SF-36, 30s chair test and 40m self-paced walk test were first combined into one function domain (total function). Thereafter, two function domains were substracted related to either performance based (objective function) or self-reported (subjective function) function. Linear regression resulted in the highest R2 for the total function domain: 0.314 (R2 for objective and subjective function were 0.252 and 0.142, respectively.). Furthermore, GaitSmart® was able to distinguish a difference in general health status, and is responsive to changes in the different aspects of objective function (Standardized response mean (SRMs) up to 0.74). Conclusion: GaitSmart® analysis can reflect performance based and self-reported function and may be of value in the evaluation of function in knee OA. Future studies are warranted to validate whether GaitSmart® can be used as clinical outcome measure in OA research and clinical practice

    Baseline clinical characteristics of predicted structural and pain progressors in the IMI-APPROACH knee OA cohort

    Get PDF
    [Abstract] Objectives: To describe the relations between baseline clinical characteristics of the Applied Public-Private Research enabling OsteoArthritis Clinical Headway (IMI-APPROACH) participants and their predicted probabilities for knee osteoarthritis (OA) structural (S) progression and/or pain (P) progression. Methods: Baseline clinical characteristics of the IMI-APPROACH participants were used for this study. Radiographs were evaluated according to Kellgren and Lawrence (K&L grade) and Knee Image Digital Analysis. Knee Injury and Osteoarthritis Outcome Score (KOOS) and Numeric Rating Scale (NRS) were used to evaluate pain. Predicted progression scores for each individual were determined using machine learning models. Pearson correlation coefficients were used to evaluate correlations between scores for predicted progression and baseline characteristics. T-tests and χ2 tests were used to evaluate differences between participants with high versus low progression scores. Results: Participants with high S progressions score were found to have statistically significantly less structural damage compared with participants with low S progression scores (minimum Joint Space Width, minJSW 3.56 mm vs 1.63 mm; p<0.001, K&L grade; p=0.028). Participants with high P progression scores had statistically significantly more pain compared with participants with low P progression scores (KOOS pain 51.71 vs 82.11; p<0.001, NRS pain 6.7 vs 2.4; p<0.001). Conclusions: The baseline minJSW of the IMI-APPROACH participants contradicts the idea that the (predicted) course of knee OA follows a pattern of inertia, where patients who have progressed previously are more likely to display further progression. In contrast, for pain progressors the pattern of inertia seems valid, since participants with high P score already have more pain at baseline compared with participants with a low P score

    Relationship Between Motion, Using the GaitSmartTM System, and Radiographic Knee Osteoarthritis: An Explorative Analysis in the IMI-APPROACH Cohort

    Get PDF
    Multicenter study[Abstract] Objectives: To assess underlying domains measured by GaitSmartTMparameters and whether these are additional to established OA markers including patient reported outcome measures (PROMs) and radiographic parameters, and to evaluate if GaitSmart analysis is related to the presence and severity of radiographic knee OA. Methods: GaitSmart analysis was performed during baseline visits of participants of the APPROACH cohort (n = 297). Principal component analyses (PCA) were performed to explore structure in relationships between GaitSmart parameters alone and in addition to radiographic parameters and PROMs. Logistic and linear regression analyses were performed to analyse the relationship of GaitSmart with the presence (Kellgren and Lawrence grade ≥2 in at least one knee) and severity of radiographic OA (ROA). Results: Two hundred and eighty-four successful GaitSmart analyses were performed. The PCA identified five underlying GaitSmart domains. Radiographic parameters and PROMs formed additional domains indicating that GaitSmart largely measures separate concepts. Several GaitSmart domains were related to the presence of ROA as well as the severity of joint damage in addition to demographics and PROMs with an area under the receiver operating characteristic curve of 0.724 and explained variances (adjusted R2) of 0.107, 0.132 and 0.147 for minimum joint space width, osteophyte area and mean subchondral bone density, respectively. Conclusions: GaitSmart analysis provides additional information over established OA outcomes. GaitSmart parameters are also associated with the presence of ROA and extent of radiographic severity over demographics and PROMS. These results indicate that GaitsmartTM may be an additional outcome measure for the evaluation of OA

    Predicted and actual 2-year structural and pain progression in the IMI-APPROACH knee osteoarthritis cohort

    Get PDF
    ClinicalTrials.gov, https://clinicaltrials.gov, NCT03883568[Abstract] Objectives: The IMI-APPROACH knee osteoarthritis study used machine learning (ML) to predict structural and/or pain progression, expressed by a structural (S) and pain (P) predicted-progression score, to select patients from existing cohorts. This study evaluates the actual 2-year progression within the IMI-APPROACH, in relation to the predicted-progression scores. Methods: Actual structural progression was measured using minimum joint space width (minJSW). Actual pain (progression) was evaluated using the Knee injury and Osteoarthritis Outcomes Score (KOOS) pain questionnaire. Progression was presented as actual change (Δ) after 2 years, and as progression over 2 years based on a per patient fitted regression line using 0, 0.5, 1 and 2-year values. Differences in predicted-progression scores between actual progressors and non-progressors were evaluated. Receiver operating characteristic (ROC) curves were constructed and corresponding area under the curve (AUC) reported. Using Youden's index, optimal cut-offs were chosen to enable evaluation of both predicted-progression scores to identify actual progressors. Results: Actual structural progressors were initially assigned higher S predicted-progression scores compared with structural non-progressors. Likewise, actual pain progressors were assigned higher P predicted-progression scores compared with pain non-progressors. The AUC-ROC for the S predicted-progression score to identify actual structural progressors was poor (0.612 and 0.599 for Δ and regression minJSW, respectively). The AUC-ROC for the P predicted-progression score to identify actual pain progressors were good (0.817 and 0.830 for Δ and regression KOOS pain, respectively). Conclusion: The S and P predicted-progression scores as provided by the ML models developed and used for the selection of IMI-APPROACH patients were to some degree able to distinguish between actual progressors and non-progressors

    Neuropathic Pain in the IMI-APPROACH Knee Osteoarthritis Cohort: Prevalence and Phenotyping

    Get PDF
    The study is registered under clinicaltrials.gov nr: NCT03883568.[Abstract] Objectives: Osteoarthritis (OA) patients with a neuropathic pain (NP) component may represent a specific phenotype. This study compares joint damage, pain and functional disability between knee OA patients with a likely NP component, and those without a likely NP component. Methods: Baseline data from the Innovative Medicines Initiative Applied Public-Private Research enabling OsteoArthritis Clinical Headway knee OA cohort study were used. Patients with a painDETECT score ≥19 (with likely NP component, n=24) were matched on a 1:2 ratio to patients with a painDETECT score ≤12 (without likely NP component), and similar knee and general pain (Knee Injury and Osteoarthritis Outcome Score pain and Short Form 36 pain). Pain, physical function and radiographic joint damage of multiple joints were determined and compared between OA patients with and without a likely NP component. Results: OA patients with painDETECT scores ≥19 had statistically significant less radiographic joint damage (p≤0.04 for Knee Images Digital Analysis parameters and Kellgren and Lawrence grade), but an impaired physical function (p<0.003 for all tests) compared with patients with a painDETECT score ≤12. In addition, more severe pain was found in joints other than the index knee (p≤0.001 for hips and hands), while joint damage throughout the body was not different. Conclusions: OA patients with a likely NP component, as determined with the painDETECT questionnaire, may represent a specific OA phenotype, where local and overall joint damage is not the main cause of pain and disability. Patients with this NP component will likely not benefit from general pain medication and/or disease-modifying OA drug (DMOAD) therapy. Reserved inclusion of these patients in DMOAD trials is advised in the quest for successful OA treatments

    Development and validation of a machine learning-supported strategy of patient selection for osteoarthritis clinical trials: the IMI-APPROACH study

    Get PDF
    Objectives: To efficiently assess the disease-modifying potential of new osteoarthritis treatments, clinical trials need progression-enriched patient populations. To assess whether the application of machine learning results in patient selection enrichment, we developed a machine learning recruitment strategy targeting progressive patients and validated it in the IMI-APPROACH knee osteoarthritis prospective study. Design: We designed a two-stage recruitment process supported by machine learning models trained to rank candidates by the likelihood of progression. First stage models used data from pre-existing cohorts to select patients for a screening visit. The second stage model used screening data to inform the final inclusion. The effectiveness of this process was evaluated using the actual 24-month progression. Results: From 3500 candidate patients, 433 with knee osteoarthritis were screened, 297 were enrolled, and 247 completed the 2-year follow-up visit. We observed progression related to pain (P, 30%), structure (S, 13%), and combined pain and structure (P ​+ ​S, 5%), and a proportion of non-progressors (N, 52%) ∼15% lower vs an unenriched population. Our model predicted these outcomes with AUC of 0.86 [95% CI, 0.81–0.90] for pain-related progression and AUC of 0.61 [95% CI, 0.52–0.70] for structure-related progression. Progressors were ranked higher than non-progressors for P ​+ ​S (median rank 65 vs 143, AUC = 0.75), P (median rank 77 vs 143, AUC = 0.71), and S patients (median rank 107 vs 143, AUC = 0.57). Conclusions: The machine learning-supported recruitment resulted in enriched selection of progressive patients. Further research is needed to improve structural progression prediction and assess this strategy in an interventional trial

    Neuropathic pain in the IMI-APPROACH knee osteoarthritis cohort:prevalence and phenotyping

    Get PDF
    Abstract Objectives:Osteoarthritis (OA) patients with a neuropathic pain (NP) component may represent a specific phenotype. This study compares joint damage, pain and functional disability between knee OA patients with a likely NP component, and those without a likely NP component. Methods:Baseline data from the Innovative Medicines Initiative Applied Public-Private Research enabling OsteoArthritis Clinical Headway knee OA cohort study were used. Patients with a painDETECT score ≥19 (with likely NP component, n=24) were matched on a 1:2 ratio to patients with a painDETECT score ≤12 (without likely NP component), and similar knee and general pain (Knee Injury and Osteoarthritis Outcome Score pain and Short Form 36 pain). Pain, physical function and radiographic joint damage of multiple joints were determined and compared between OA patients with and without a likely NP component. Results:OA patients with painDETECT scores ≥19 had statistically significant less radiographic joint damage (p≤0.04 for Knee Images Digital Analysis parameters and Kellgren and Lawrence grade), but an impaired physical function (p&lt;0.003 for all tests) compared with patients with a painDETECT score ≤12. In addition, more severe pain was found in joints other than the index knee (p≤0.001 for hips and hands), while joint damage throughout the body was not different. Conclusions: OA patients with a likely NP component, as determined with the painDETECT questionnaire, may represent a specific OA phenotype, where local and overall joint damage is not the main cause of pain and disability. Patients with this NP component will likely not benefit from general pain medication and/or disease-modifying OA drug (DMOAD) therapy. Reserved inclusion of these patients in DMOAD trials is advised in the quest for successful OA treatments. Trial registration number. The study is registered under clinicaltrials.gov nr: NCT03883568

    Predicted and actual 2-year structural and pain progression in the IMI-APPROACH knee osteoarthritis cohort

    No full text
    Abstract Objectives: The IMI-APPROACH knee osteoarthritis study used machine learning (ML) to predict structural and/or pain progression, expressed by a structural (S) and pain (P) predicted-progression score, to select patients from existing cohorts. This study evaluates the actual 2-year progression within the IMI-APPROACH, in relation to the predicted-progression scores. Methods: Actual structural progression was measured using minimum joint space width (minJSW). Actual pain (progression) was evaluated using the Knee injury and Osteoarthritis Outcomes Score (KOOS) pain questionnaire. Progression was presented as actual change (Δ) after 2 years, and as progression over 2 years based on a per patient fitted regression line using 0, 0.5, 1 and 2-year values. Differences in predicted-progression scores between actual progressors and non-progressors were evaluated. Receiver operating characteristic (ROC) curves were constructed and corresponding area under the curve (AUC) reported. Using Youden’s index, optimal cut-offs were chosen to enable evaluation of both predicted-progression scores to identify actual progressors. Results: Actual structural progressors were initially assigned higher S predicted-progression scores compared with structural non-progressors. Likewise, actual pain progressors were assigned higher P predicted-progression scores compared with pain non-progressors. The AUC-ROC for the S predicted-progression score to identify actual structural progressors was poor (0.612 and 0.599 for Δ and regression minJSW, respectively). The AUC-ROC for the P predicted-progression score to identify actual pain progressors were good (0.817 and 0.830 for Δ and regression KOOS pain, respectively). Conclusion: The S and P predicted-progression scores as provided by the ML models developed and used for the selection of IMI-APPROACH patients were to some degree able to distinguish between actual progressors and non-progressors. Trial registration: ClinicalTrials.gov, https://clinicaltrials.gov, NCT03883568

    Development and validation of a machine learning-supported strategy of patient selection for osteoarthritis clinical trials:the IMI-APPROACH study

    No full text
    Abstract Objectives: To efficiently assess the disease-modifying potential of new osteoarthritis treatments, clinical trials need progression-enriched patient populations. To assess whether the application of machine learning results in patient selection enrichment, we developed a machine learning recruitment strategy targeting progressive patients and validated it in the IMI-APPROACH knee osteoarthritis prospective study. Design: We designed a two-stage recruitment process supported by machine learning models trained to rank candidates by the likelihood of progression. First stage models used data from pre-existing cohorts to select patients for a screening visit. The second stage model used screening data to inform the final inclusion. The effectiveness of this process was evaluated using the actual 24-month progression. Results: From 3500 candidate patients, 433 with knee osteoarthritis were screened, 297 were enrolled, and 247 completed the 2-year follow-up visit. We observed progression related to pain (P, 30%), structure (S, 13%), and combined pain and structure (P ​+ ​S, 5%), and a proportion of non-progressors (N, 52%) ∼15% lower vs an unenriched population. Our model predicted these outcomes with AUC of 0.86 [95% CI, 0.81–0.90] for pain-related progression and AUC of 0.61 [95% CI, 0.52–0.70] for structure-related progression. Progressors were ranked higher than non-progressors for P ​+ ​S (median rank 65 vs 143, AUC = 0.75), P (median rank 77 vs 143, AUC = 0.71), and S patients (median rank 107 vs 143, AUC = 0.57). Conclusions: The machine learning-supported recruitment resulted in enriched selection of progressive patients. Further research is needed to improve structural progression prediction and assess this strategy in an interventional trial
    corecore