940 research outputs found

    Systematic review and meta-analysis of vancomycin-induced nephrotoxicity associated with dosing schedules that maintain troughs between 15 and 20 milligrams per liter

    Get PDF
    In an effort to maximize outcomes, recent expert guidelines recommend more-intensive vancomycin dosing schedules to maintain vancomycin troughs between 15 and 20 mg/liter.The widespread use of these more-intensive regimens has been associated with an increase in vancomycin-induced nephrotoxicity reports.The purpose of this systematic literature review is to determine the nephrotoxicity potential of maintaining higher troughs in clinical practice.All studies pertaining to vancomycin-induced nephrotoxicity between 1996 and April 2012 were identified from PubMed, Embase, Cochrane Controlled Trial Registry, and Medline databases and analyzed according to Cochrane guidelines.Of the initial 240 studies identified, 38 were reviewed, and 15 studies met the inclusion criteria.Overall, higher troughs ( >15 mg/liter) were associated with increased odds of nephrotoxicity (odds ratio [OR], 2.67; 95% confidence interval [CI], 1.95 to 3.65) relative to lower troughs of >15 mg/liter.The relationship between a trough of >15 mg/liter and nephrotoxicity persisted when the analysis was restricted to studies that examined only initial trough concentrations (OR, 3.12; 95% CI, 1.81 to 5.37).The relationship between troughs of >15 mg/liter and nephrotoxicity persisted after adjustment for covariates known to independently increase the risk of a nephrotoxicity event.An incremental increase in nephrotoxicity was also observed with longer durations of vancomycin administration.Vancomycin-induced nephrotoxicity was reversible in the majority of cases, with short-term dialysis required only in 3% of nephrotoxic episodes.The collective literature indicates that an exposure-nephrotoxicity relationship for vancomycin exists.The probability of a nephrotoxic event increased as a function of the trough concentration and duration of therapy

    Using Artificial Intelligence to Predict Intracranial Hypertension in Patients After Traumatic Brain Injury:A Systematic Review

    Get PDF
    Intracranial hypertension (IH) is a key driver of secondary brain injury in patients with traumatic brain injury. Lowering intracranial pressure (ICP) as soon as IH occurs is important, but a preemptive approach would be more beneficial. We systematically reviewed the artificial intelligence (AI) models, variables, performances, risks of bias, and clinical machine learning (ML) readiness levels of IH prediction models using AI. We conducted a systematic search until 12-03-2023 in three databases. Only studies predicting IH or ICP in patients with traumatic brain injury with a validation of the AI model were included. We extracted type of AI model, prediction variables, model performance, validation type, and prediction window length. Risk of bias was assessed with the Prediction Model Risk of Bias Assessment Tool, and we determined the clinical ML readiness level. Eleven out of 399 nonduplicate publications were included. A gaussian processes model using ICP and mean arterial pressure was most common. The maximum reported area under the receiver operating characteristic curve was 0.94. Four studies conducted external validation, and one study a prospective clinical validation. The prediction window length preceding IH varied between 30 and 60 min. Most studies (73%) had high risk of bias. The highest clinical ML readiness level was 6 of 9, indicating “real-time model testing” stage in one study. Several IH prediction models using AI performed well, were externally validated, and appeared ready to be tested in the clinical workflow (clinical ML readiness level 5 of 9). A Gaussian processes model was most used, and ICP and mean arterial pressure were frequently used variables. However, most studies showed a high risk of bias. Our findings may help position AI for IH prediction on the path to ultimate clinical integration and thereby guide researchers plan and design future studies.</p

    Using Artificial Intelligence to Predict Intracranial Hypertension in Patients After Traumatic Brain Injury:A Systematic Review

    Get PDF
    Intracranial hypertension (IH) is a key driver of secondary brain injury in patients with traumatic brain injury. Lowering intracranial pressure (ICP) as soon as IH occurs is important, but a preemptive approach would be more beneficial. We systematically reviewed the artificial intelligence (AI) models, variables, performances, risks of bias, and clinical machine learning (ML) readiness levels of IH prediction models using AI. We conducted a systematic search until 12-03-2023 in three databases. Only studies predicting IH or ICP in patients with traumatic brain injury with a validation of the AI model were included. We extracted type of AI model, prediction variables, model performance, validation type, and prediction window length. Risk of bias was assessed with the Prediction Model Risk of Bias Assessment Tool, and we determined the clinical ML readiness level. Eleven out of 399 nonduplicate publications were included. A gaussian processes model using ICP and mean arterial pressure was most common. The maximum reported area under the receiver operating characteristic curve was 0.94. Four studies conducted external validation, and one study a prospective clinical validation. The prediction window length preceding IH varied between 30 and 60 min. Most studies (73%) had high risk of bias. The highest clinical ML readiness level was 6 of 9, indicating “real-time model testing” stage in one study. Several IH prediction models using AI performed well, were externally validated, and appeared ready to be tested in the clinical workflow (clinical ML readiness level 5 of 9). A Gaussian processes model was most used, and ICP and mean arterial pressure were frequently used variables. However, most studies showed a high risk of bias. Our findings may help position AI for IH prediction on the path to ultimate clinical integration and thereby guide researchers plan and design future studies.</p

    Gastrointestinal pathogen distribution in symptomatic children in Sydney, Australia

    Full text link
    There is limited information on the causes of paediatric diarrhoea in Sydney. This cross-sectional study used clinical and microbiological data to describe the clinical features and pathogens associated with gastrointestinal illnesses for children presenting to two major public hospitals in Sydney with diarrhoea, for the period January 2007-December 2010.Of 825 children who tested positive for an enteric pathogen, 430 medical records were reviewed. Adenovirus, norovirus and rotavirus were identified in 20.8%, 20.3% and 21.6% of reviewed cases, respectively. Younger children were more likely to have adenovirus and norovirus compared with rotavirus (P=0.001). More viruses were detected in winter than in the other three seasons (P=0.001). Rotavirus presented a distinct seasonal pattern with the lowest rates occurring in the warm months and peaking in the cooler months. Adenovirus showed a less consistent monthly trend, and norovirus detection increased in the cooler months (P=0.008). A decline in the number of rotavirus cases was observed after mid-2008.The majority of childhood diarrhoeal illnesses leading to hospital presentations in Sydney are caused by enteric viruses with most infections following clear seasonal patterns. However, a sustained decrease in the incidence of rotavirus infections has been observed over the study period. © 2012 Ministry of Health, Saudi Arabia

    Epidemiology and geographical distribution of enteric protozoan infections in Sydney, Australia

    Full text link
    © 2014 S. Fletcher et al., 2014. Results: Frequently detected protozoa were Blastocystis spp. (57%), Giardia intestinalis (27%) and Dientamoeba fragilis (12%). The age distribution showed that the prevalence of protozoa decreased with age up to 24 years but increasing with age from 25 years onwards. The geographic provenance of the patients indicates that the majority of cases of Blastocystis (53.1%) are clustered in and around the Sydney City Business District, while pockets of giardiasis were identified in regional/rural areas. The distribution of cases suggests higher risk of protozoan infection may exist for some communities.Conclusions: These findings provide useful information for policy makers to design and tailor interventions to target high risk communities Follow-up investigation into the risk factors for giardiasis in regional/rural areas is needed.Background: Enteric protozoa are associated with diarrhoeal illnesses in humans; however there are no recent studies on their epidemiology and geographical distribution in Australia. This study describes the epidemiology of enteric protozoa in the state of New South Wales and incorporates spatial analysis to describe their distribution.Design and methods: Laboratory and clinical records from four public hospitals in Sydney for 910 patients, who tested positive for enteric protozoa over the period January 2007 - December 2010, were identified, examined and analysed. We selected 580 cases which had residence post code data available, enabling us to examine the geographic distribution of patients, and reviewed the clinical data of 252 patients to examine possible links between protozoa, demographic and clinical features

    Frontal plane roll-over analysis of prosthetic feet

    Get PDF
    In prosthetic walking mediolateral balance is compromised due to the lack of active ankle control, by moments of force, in the prosthetic limb. Active control is reduced to the hip strategy, and passive mechanical stability depends on the curvature of the prosthetic foot under load. Mediolateral roll-over curvatures of prosthetic feet are largely unknown. In this study we determined the mediolateral roll-over characteristics of various prosthetic feet and foot-shoe combinations. Characteristics were determined by means of an inverted pendulum-like apparatus. The relationship between the centre of pressure (CoP) and the shank angle was measured and converted to roll-over shape and effective radius of curvature. Further, hysteresis (i.e., lagging in CoP displacement due to material compliance or slip) at vertical shank angle was determined from the hysteresis curve. Passive mechanical stability varied widely, though all measured foot-shoe combinations were relatively compliant. Mediolateral motion of the CoP ranged between 4 mm and 40 mm, thereby remaining well within each foot's physical width. Derived roll-over radii of curvature are also small, with an average of 102 mm. Hysteresis ranges between 20% and 115% of total CoP displacement and becomes more pronounced when adding a shoe. This may be due to slipping of the foot core in its cosmetic cover, or the foot in the shoe. Slip may be disadvantageous for balance control by limiting mediolateral travel of the CoP. It may therefore be clinically relevant to eliminate mediolateral slip in prosthetic foot design

    N deposition and elevated CO2 on methane emissions: Differential responses of indirect effects compared to direct effects through litter chemistry feedbacks

    Get PDF
    Increases in atmospheric CO2 concentration and N deposition are expected to affect methane (CH4) production in soils and emission to the atmosphere, directly through increased plant litter production and indirectly through changes in substrate quality. We examined how CH4 emission responded to changes in litter quality under increased N and CO2, beyond differences in CH4 resulting from changes in litter production. We used senesced leaves from 13C-labeled plants of Molinia caerulea grown at elevated and ambient CO2 and affected by N fertilization to carry out two experiments: a laboratory litter incubation and a pot experiment. N fertilization increased N and decreased C concentrations in litter whereas elevated CO2 decreased litter quality as reflected in litter C and N concentrations and in the composition of lignin and saturated fatty acids within the litter. In contrast to our expectations, CH4 production in the laboratory incubation decreased when using litter from N-fertilized plants as substrate, whereas litter from elevated CO2 had no effect, compared to controls without N and at ambient CO2. Owing to high within-treatment variability in CH4 emissions, none of the treatment effects were reflected in the pot experiment. C mineralization rates were not affected by any of the treatments. The decrease in CH4 emissions due to indirect effects of N availability through litter quality changes (described here for the first time) contrast direct effects of N fertilization on CH4 production. The complex interaction of direct effects with indirect effects of increased N on litter quality may potentially result in a net decrease in CH4 emissions from wetlands in the long term.Fil: Pancotto, Veronica Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Austral de Investigaciones Científicas; ArgentinaFil: Bodegom, P. M. van. University Of Amsterdam; Países BajosFil: Hal, J. van. University Of Amsterdam; Países BajosFil: Logtestijn, R. S. P. van. University Of Amsterdam; Países BajosFil: Blokker, P.. University Of Amsterdam; Países BajosFil: Toet, S.. University Of Amsterdam; Países Bajos. University Of York; Reino UnidoFil: Aerts, R.. University Of Amsterdam; Países Bajo
    corecore