244 research outputs found

    Exhaustion of the CD8+ T cell compartment in patients with mutations in phosphoinositide 3-kinase delta

    Get PDF
    Pathogenic gain-of-function mutations in the gene encoding phosphoinositide 3-kinase delta (PI3Kδ) cause activated PI3Kδ syndrome (APDS), a disease characterized by humoral immunodeficiency, lymphadenopathy, and an inability to control persistent viral infections including Epstein-Barr virus (EBV) and cytomegalovirus (CMV) infections. Understanding the mechanisms leading to impaired immune response is important to optimally treat APDS patients. Immunosenescence of CD8+ T cells was suggested to contribute to APDS pathogenesis. However, the constitutive activation of T cells in APDS may also result in T cell exhaustion. Therefore, we studied exhaustion of the CD8+ T cell compartment in APDS patients and compared them with healthy controls and HIV patients, as a control for exhaustion. The subset distribution of the T cell compartment of APDS patients was comparable with HIV patien

    Somatostatin analogues for receptor targeted photodynamic therapy

    Get PDF
    Photodynamic therapy (PDT) is an established treatment modality, used mainly for anticancer therapy that relies on the interaction of photosensitizer, light and oxygen. For the treatment of pathologies in certain anatomical sites, improved targeting of the photosensitizer is necessary to prevent damage to healthy tissue. We report on a novel dual approach of targeted PDT (vascular and cellular targeting) utilizing the expression of neuropeptide somatostatin receptor (sst2) on tumor and neovascular-endothelial cells. We synthesized two conjugates containing the somatostatin analogue [Tyr3]-octreotate and Chlorin e6 (Ce6): Ce6-K3-[Tyr3]-octreotate (1) and Ce6-[Tyr3]-octreotate-K3-[Tyr3]-octreotate (2). Investigation of the uptake and photodynamic activity of conjugates in-vitro in human erythroleukemic K562 cells showed that conjugation of [Tyr3]-octreotate with Ce6 in conjugate 1 enhances uptake (by a factor 2) in cells over-expressing sst2 compared to wild-type cells. Co-treatment with excess free Octreotide abrogated the phototoxicity of conjugate 1 indicative of a specific sst2-mediated effect. In contrast conjugate 2 showed no receptor-mediated effect due to its high hydrophobicity. When compared with un-conjugated Ce6, the PDT activity of conjugate 1 was lower. However, it showed higher photostability which may compensate for its lower phototoxicity. Intra-vital fluorescence pharmacokinetic studies of conjugate 1 in rat skin-fold observation chambers transplanted with sst2+ AR42J acinar pancreas tumors showed significantly different uptake profiles compared to free Ce6. Co-treatment with free Octreotide significantly reduced conjugate uptake in tumor tissue (by a factor 4) as well as in the chamber neo-vasculature. These results show that conjugate 1 might have potential as an in-vivo sst2 targeting photosensitizer conjugate

    Whole exome sequencing of patients with varicella-zoster virus and herpes simplex virus induced acute retinal necrosis reveals rare disease-associated genetic variants

    Get PDF
    Purpose: Herpes simplex virus (HSV) and varicella-zoster virus (VZV) are neurotropic human alphaherpesviruses endemic worldwide. Upon primary infection, both viruses establish lifelong latency in neurons and reactivate intermittently to cause a variety of mild to severe diseases. Acute retinal necrosis (ARN) is a rare, sight-threatening eye disease induced by ocular VZV or HSV infection. The virus and host factors involved in ARN pathogenesis remain incompletely described. We hypothesize an underlying genetic defect in at least part of ARN cases. Methods: We collected blood from 17 patients with HSV-or VZV-induced ARN, isolated DNA and performed Whole Exome Sequencing by Illumina followed by analysis in Varseq with criteria of CADD score &gt; 15 and frequency in GnomAD &lt; 0.1% combined with biological filters. Gene modifications relative to healthy control genomes were filtered according to high quality and read-depth, low frequency, high deleteriousness predictions and biological relevance. Results: We identified a total of 50 potentially disease-causing genetic variants, including missense, frameshift and splice site variants and on in-frame deletion in 16 of the 17 patients. The vast majority of these genes are involved in innate immunity, followed by adaptive immunity, autophagy, and apoptosis; in several instances variants within a given gene or pathway was identified in several patients.Discussion: We propose that the identified variants may contribute to insufficient viral control and increased necrosis ocular disease presentation in the patients and serve as a knowledge base and starting point for the development of improved diagnostic, prophylactic, and therapeutic applications.</p

    A structurally informed autotransporter platform for efficient heterologous protein secretion and display.

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The self-sufficient autotransporter (AT) pathway, ubiquitous in Gram-negative bacteria, combines a relatively simple protein secretion mechanism with a high transport capacity. ATs consist of a secreted passenger domain and a β-domain that facilitates transfer of the passenger across the cell-envelope. They have a great potential for the extracellular expression of recombinant proteins but their exploitation has suffered from the limited structural knowledge of carrier ATs. Capitalizing on its crystal structure, we have engineered the <it>Escherichia coli</it> AT Hemoglobin protease (Hbp) into a platform for the secretion and surface display of heterologous proteins, using the <it>Mycobacterium tuberculosis</it> vaccine target ESAT6 as a model protein.</p> <p>Results</p> <p>Based on the Hbp crystal structure, five passenger side domains were selected and one by one replaced by ESAT6, whereas a β-helical core structure (β-stem) was left intact. The resulting Hbp-ESAT6 chimeras were efficiently and stably secreted into the culture medium of <it>E. coli</it>. On the other hand, Hbp-ESAT6 fusions containing a truncated β-stem appeared unstable after translocation, demonstrating the importance of an intact β-stem. By interrupting the cleavage site between passenger and β-domain, Hbp-ESAT6 display variants were constructed that remain cell associated and facilitate efficient surface exposure of ESAT6 as judged by proteinase K accessibility and whole cell immuno-EM analysis. Upon replacement of the passenger side domain of an alternative AT, EspC, ESAT6 was also efficiently secreted, showing the approach is more generally applicable to ATs. Furthermore, Hbp-ESAT6 was efficiently displayed in an attenuated <it>Salmonella typhimurium</it> strain upon chromosomal integration of a single encoding gene copy, demonstrating the potential of the Hbp platform for live vaccine development.</p> <p>Conclusions</p> <p>We developed the first structurally informed AT platform for efficient secretion and surface display of heterologous proteins. The platform has potential with regard to the development of recombinant live vaccines and may be useful for other biotechnological applications that require high-level secretion or display of recombinant proteins by bacteria.</p

    Analysis of polymorphisms of canine Cytochrome P 450-CYP2D15

    Get PDF
    Cytochrome P450 (CYP) proteins constitute a large ancient family of oxidative enzymes essential for the efficient elimination of a wide variety of clinically used drugs. Polymorphic variants of human CYP2D6 are associated with the conversion rate and efficacy of several drugs such as antidepressants. Polymorphisms of the canine orthologue CYP2D15 are of interest because these antidepressants are also used in dogs with behavioral problems and the outcome of the treatment is variable. However, the annotated CYP2D15 gene is incomplete and inaccurately assembled in CanFam3.1, hampering DNA sequence analysis of the gene in individual dogs. We elucidated the complete exon-intron structure of CYP2D15 to enable comprehensive genotyping of the gene using genomic DNA. We surveyed variations of the gene in four diverse dog breeds and identified novel polymorphisms in exon 2 in border collies. Further investigation to establish the impact of these canine CYP2D15 polymorphisms on interindividual variability in expression and function of this metabolizing enzyme is now feasible. Further knowledge of CYP pharmacogenetics will help individualize therapy and thereby increase therapeutic efficacy, especially in the use of antidepressants in veterinary behavioral medicine

    The PID Odyssey 2030:outlooks, unmet needs, hurdles, and opportunities — proceedings from the IPOPI global multi-stakeholders’ summit (June 2022)

    Get PDF
    IPOPI held its first Global Multi-Stakeholders’ Summit on 23-24 June 2022 in Cascais, Portugal. This IPOPI initiative was designed to set the stage for a stimulating forward-thinking meeting and brainstorming discussion among stakeholders on the future priorities of the PID community. All participants were actively engaged in the entire Summit, bringing provocative questions to ensure a high level of discussion and engagement, and partnered in identifying the outlooks, unmet needs, hurdles and opportunities of PIDs for 2030. The topics that were covered include diagnosis (e.g., newborn screening [NBS], genomic sequencing— including ethical aspects on the application of genomics on NBS, the role of more accurate and timely diagnostics in impacting personalized management), treatment (e.g., the therapeutic evolution of immunoglobulins in a global environment, new therapies such as targeted therapies, new approaches in curative therapies), the interactions of Primary ID with Secondary ID, Autoinflammatory Diseases and other diseases as the field experiences an incessant evolution, and also the avenues for research in the field of humanities and human sciences such as Patient-Reported Outcome Measures (PROMs), Patient-Reported Experience Measures (PREMs), and Health-Related Quality Of Life (HRQoL). During this meeting, all participants contributed to the drafting of recommendations based on our common understanding of the future opportunities, challenges, and scenarios. As a collection of materials, perspectives and summaries, they are succinct and impactful and may help determine some of the next key steps for the PID community.</p

    The behaviour of political parties and MPs in the parliaments of the Weimar Republic

    Get PDF
    Copyright @ 2012 The Authors. This is the author's accepted manuscript. The final published article is available from the link below.Analysing the roll-call votes of the MPs of the Weimar Republic we find: (1) that party competition in the Weimar parliaments can be structured along two dimensions: an economic left–right and a pro-/anti-democratic. Remarkably, this is stable throughout the entire lifespan of the Republic and not just in the later years and despite the varying content of votes across the lifespan of the Republic, and (2) that nearly all parties were troubled by intra-party divisions, though, in particular, the national socialists and communists became homogeneous in the final years of the Republic.Zukunftskolleg, University of Konstan

    Rapid Low-Cost Microarray-Based Genotyping for Genetic Screening in Primary Immunodeficiency

    Get PDF
    Background: Genetic tests for primary immunodeficiency disorders (PIDs) are expensive, time-consuming, and not easily accessible in developing countries. Therefore, we studied the feasibility of a customized single nucleotide variant (SNV) microarray that we developed to detect disease-causing variants and copy number variation (CNV) in patients with PIDs for only 40 Euros. Methods: Probes were custom-designed to genotype 9,415 variants of 277 PID-related genes, and were added to the genome-wide Illumina Global Screening Array (GSA). Data analysis of GSA was performed using Illumina GenomeStudio 2.0, Biodiscovery Nexus 10.0, and R-3.4.4 software. Validation of genotype calling was performed by comparing the GSA with whole-genome sequencing (WGS) data of 56 non-PID controls. DNA samples of 95 clinically diagnosed PID patients, of which 60 patients (63%) had a genetically established diagnosis (by Next-Generation Sequencing (NGS) PID panels or Sanger sequencing), w

    Rare mutations in SQSTM1 modify susceptibility to frontotemporal lobar degeneration

    Get PDF
    Mutations in the gene coding for Sequestosome 1 (SQSTM1) have been genetically associated with amyotrophic lateral sclerosis (ALS) and Paget disease of bone. In the present study, we analyzed the SQSTM1 coding sequence for mutations in an extended cohort of 1,808 patients with frontotemporal lobar degeneration (FTLD), ascertained within the European Early-Onset Dementia consortium. As control dataset, we sequenced 1,625 European control individuals and analyzed whole-exome sequence data of 2,274 German individuals (total n = 3,899). Association of rare SQSTM1 mutations was calculated in a meta-analysis of 4,332 FTLD and 10,240 control alleles. We identified 25 coding variants in FTLD patients of which 10 have not been described. Fifteen mutations were absent in the control individuals (carrier frequency < 0.00026) whilst the others were rare in both patients and control individuals. When pooling all variants with a minor allele frequency < 0.01, an overall frequency of 3.2 % was calculated in patients. Rare variant association analysis between patients and controls showed no difference over the whole protein, but suggested that rare mutations clustering in the UBA domain of SQSTM1 may influence disease susceptibility by doubling the risk for FTLD (RR = 2.18 [95 % CI 1.24-3.85]; corrected p value = 0.042). Detailed histopathology demonstrated that mutations in SQSTM1 associate with widespread neuronal and glial phospho-TDP-43 pathology. With this study, we provide further evidence for a putative role of rare mutations in SQSTM1 in the genetic etiology of FTLD and showed that, comparable to other FTLD/ALS genes, SQSTM1 mutations are associated with TDP-43 pathology
    • …
    corecore