1,280 research outputs found

    cAMP activates adenylate and guanylate cyclase of Dictyostelium discoideum cells by binding to different classes of cell-surface receptors. A study with extracellular Ca2+

    Get PDF
    cAMP induces a transient increase of cAMP and cGMP levels in Dictyostelium discoideum cells. Fast binding experiments reveal three types of cAMP-binding site (S, H and L), which have different off-rates (t0.5, 0.7-15 s) and different affinities (Kd, 15-450 nM). A time- and cAMP-concentration-dependent transition of H- to L-sites occurs during the binding reaction. Extracellular Ca2+ had multiple effects on cAMP-binding sites. (i) The number of H + L-sites increased 2.5-fold, while the number of S-sites was not strongly affected. (ii) The Kd of the S-sites was reduced from 16 nM to 5 nM (iii) The conversion of H-sites to L-sites was inhibited up to 80%. The kinetics of the cAMP-induced cAMP accumulation was not strongly altered by Ca2+, but the amount of cAMP produced was inhibited up to 80%. The kinetics of the cAMP-induced cGMP accumulation was strongly altered; maximal levels were obtained sooner, and the Ka was reduced from 15 to 3.5 nM cAMP. Ca2+, Mg2+ and Mn2+ increased the number of binding sites, all with EC50 = 0.5 mM. The S-sites and the cGMP response were modified by equal Ca2+ concentrations and by higher concentrations of Mg2+ and Mn2+ (EC50 are respectively 0.4 mM, 2.5 mM and about 25 mM). The conversion of H- to L-sites and the cAMP response were specifically inhibited by Ca2+ with EC50 = 20 µM. It is concluded that cAMP activates guanylate cyclase through the S-sites; adenylate cyclase is activated by the H + L-sites, in which the appearance of the L-sites during the binding reaction represents the coupling of occupied surface cAMP receptors to adenylate cyclase.

    The Cell Density Factor CMF Regulates the Chemoattractant Receptor cAR1 in Dictyostelium

    Get PDF
    Starving Dictyostelium cells aggregate by chemotaxis to cAMP when a secreted protein called conditioned medium factor (CMF) reaches a threshold concentration. Cells expressing CMF antisense mRNA fail to aggregate and do not transduce signals from the cAMP receptor. Signal transduction and aggregation are restored by adding recombinant CMF. We show here that two other cAMP-induced events, the formation of a slow dissociating form of the cAMP receptor and the loss of ligand binding, which is the first step of ligand-induced receptor sequestration, also require CMF. Vegetative cells have very few CMF and cAMP receptors, while starved cells possess ~40,000 receptors for CMF and cAMP. Transformants overexpressing the cAMP receptor gene cAR1 show a 10-fold increase of [3H]cAMP binding and a similar increase of [125I]CMF binding; disruption of the cAR1 gene abolishes both cAMP and CMF binding. In wild-type cells, downregulation of cAR1 with high levels of cAMP also downregulates CMF binding, and CMF similarly downregulates cAMP and CMF binding. This suggests that the cAMP binding and CMF binding are closely linked. Binding of ~200 molecules of CMF to starved cells affects the affinity of the majority of the cAR1 cAMP receptors within 2 min, indicating that an amplifying mechanism allows one activated CMF receptor to regulate many cARs. In cells lacking the G-protein β subunit, cAMP induces a loss of cAMP binding, but not CMF binding, while CMF induces a reduction of CMF binding without affecting cAMP binding, suggesting that the linkage of the cell density-sensing CMF receptor and the chemoattractant cAMP receptor is through a G-protein.

    Unified control of amoeboid pseudopod extension in multiple organisms by branched F-actin in the front and parallel F-actin/myosin in the cortex

    Get PDF
    The trajectory of moving eukaryotic cells depends on the kinetics and direction of extending pseudopods. The direction of pseudopods has been well studied to unravel mechanisms for chemotaxis, wound healing and inflammation. However, the kinetics of pseudopod extension-when and why do pseudopods start and stop- is equally important, but is largely unknown. Here the START and STOP of about 4000 pseudopods was determined in four different species, at four conditions and in nine mutants (fast amoeboids Dictyostelium and neutrophils, slow mesenchymal stem cells, and fungus B.d. chytrid with pseudopod and a flagellum). The START of a first pseudopod is a random event with a probability that is species-specific (23%/s for neutrophils). In all species and conditions, the START of a second pseudopod is strongly inhibited by the extending first pseudopod, which depends on parallel filamentous actin/myosin in the cell cortex. Pseudopods extend at a constant rate by polymerization of branched F-actin at the pseudopod tip, which requires the Scar complex. The STOP of pseudopod extension is induced by multiple inhibitory processes that evolve during pseudopod extension and mainly depend on the increasing size of the pseudopod. Surprisingly, no differences in pseudopod kinetics are detectable between polarized, unpolarized or chemotactic cells, and also not between different species except for small differences in numerical values. This suggests that the analysis has uncovered the fundament of cell movement with distinct roles for stimulatory branched F-actin in the protrusion and inhibitory parallel F-actin in the contractile cortex

    A diffusion-translocation model for gradient sensing by chemotactic cells

    Get PDF
    Small chemotactic cells like Dictyostelium and neutrophils transduce shallow spatial chemoattractant gradients into strongly localized intracellular responses. We show that the capacity of a second messenger to establish and maintain localized signals, is mainly determined by its dispersion range, lambda = the square root of D(m)/k(-1), which must be small compared to the cell's length. Therefore, short-living second messengers (high k(-1)) with diffusion coefficients D(m) in the range of 0-5 microm(2) s(-1) are most suitable. Additional to short dispersion ranges, gradient sensing may include positive feedback mechanisms that lead to local activation and global inhibition of second-messenger production. To introduce the essential nonlinear amplification, we have investigated models in which one or more components of the signal transduction cascade translocate from the cytosol to the second messenger in the plasma membrane. A one-component model is able to amplify a 1.5-fold difference of receptor activity over the cell length into a 15-fold difference of second-messenger concentration. Amplification can be improved considerably by introducing an additional activating component that translocates to the membrane. In both models, communication between the front and the back of the cell is mediated by partial depletion of cytosolic components, which leads to both local activation and global inhibition. The results suggest that a biochemically simple and general mechanism may explain various signal localization phenomena not only in chemotactic cells but also those occurring in morphogenesis and cell differentiation

    Sensory Adaptation of Dictyostelium discoideum Cells to Chemotactic Signals

    Get PDF
    Postvegetative Dictyostelium discoideum cells react chemotactically to gradients of cAMP, folic acid, and pterin. In the presence of a constant concentration of 10-5 M cAMP cells move at random. They still are able to respond to superimposed gradients of cAMP, although the response is less efficient than without the high background level of cAMP. Cells which are accommodated to 10-5 M cAMP do not react to a gradient of cAMP if the mean cAMP concentration is decreasing with time. This indicates the involvement of adaptation in the detection of chemotactic gradients: cells adapt to the mean concentration of chemoattractant and respond to positive deviations from the mean concentration. Cells adapted to high cAMP concentrations react normally to gradients of folic acid or pterin. Adaptation to one of these compounds does not affect the response to the other attractants. This suggests that cAMP, folic acid, and pterin are detected by different receptors, and that adaptation is localized at a step in the transduction process before the signals from these receptors coincide into one pathway. I discuss the implications of adaptation for chemotaxis and cell aggregation

    A Model for a Correlated Random Walk Based on the Ordered Extension of Pseudopodia

    Get PDF
    Cell migration in the absence of external cues is well described by a correlated random walk. Most single cells move by extending protrusions called pseudopodia. To deduce how cells walk, we have analyzed the formation of pseudopodia by Dictyostelium cells. We have observed that the formation of pseudopodia is highly ordered with two types of pseudopodia: First, de novo formation of pseudopodia at random positions on the cell body, and therefore in random directions. Second, pseudopod splitting near the tip of the current pseudopod in alternating right/left directions, leading to a persistent zig-zag trajectory. Here we analyzed the probability frequency distributions of the angles between pseudopodia and used this information to design a stochastic model for cell movement. Monte Carlo simulations show that the critical elements are the ratio of persistent splitting pseudopodia relative to random de novo pseudopodia, the Left/Right alternation, the angle between pseudopodia and the variance of this angle. Experiments confirm predictions of the model, showing reduced persistence in mutants that are defective in pseudopod splitting and in mutants with an irregular cell surface
    • …
    corecore