59 research outputs found

    The Host Range of Gammaretroviruses and Gammaretroviral Vectors Includes Post-Mitotic Neural Cells

    Get PDF
    Gammaretroviruses and gammaretroviral vectors, in contrast to lentiviruses and lentiviral vectors, are reported to be restricted in their ability to infect growth-arrested cells. The block to this restriction has never been clearly defined. The original assessment of the inability of gammaretroviruses and gammaretroviral vectors to infect growth-arrested cells was carried out using established cell lines that had been growth-arrested by chemical means, and has been generalized to neurons, which are post-mitotic. We re-examined the capability of gammaretroviruses and their derived vectors to efficiently infect terminally differentiated neuroendocrine cells and primary cortical neurons, a target of both experimental and therapeutic interest.Using GFP expression as a marker for infection, we determined that both growth-arrested (NGF-differentiated) rat pheochromocytoma cells (PC12 cells) and primary rat cortical neurons could be efficiently transduced, and maintained long-term protein expression, after exposure to murine leukemia virus (MLV) and MLV-based retroviral vectors. Terminally differentiated PC12 cells transduced with a gammaretroviral vector encoding the anti-apoptotic protein Bcl-xL were protected from cell death induced by withdrawal of nerve growth factor (NGF), demonstrating gammaretroviral vector-mediated delivery and expression of genes at levels sufficient for therapeutic effect in non-dividing cells. Post-mitotic rat cortical neurons were also shown to be susceptible to transduction by murine replication-competent gammaretroviruses and gammaretroviral vectors.These findings suggest that the host range of gammaretroviruses includes post-mitotic and other growth-arrested cells in mammals, and have implications for re-direction of gammaretroviral gene therapy to neurological disease

    Activating mutations of the GNAQ gene: a frequent event in primary melanocytic neoplasms of the central nervous system

    Get PDF
    Primary melanocytic neoplasms of the central nervous system (CNS) are uncommon neoplasms derived from melanocytes that normally can be found in the leptomeninges. They cover a spectrum of malignancy grades ranging from low-grade melanocytomas to lesions of intermediate malignancy and overtly malignant melanomas. Characteristic genetic alterations in this group of neoplasms have not yet been identified. Using direct sequencing, we investigated 19 primary melanocytic lesions of the CNS (12 melanocytomas, 3 intermediate-grade melanocytomas, and 4 melanomas) for hotspot oncogenic mutations commonly found in melanocytic tumors of the skin (BRAF, NRAS, and HRAS genes) and uvea (GNAQ gene). Somatic mutations in the GNAQ gene at codon 209, resulting in constitutive activation of GNAQ, were detected in 7/19 (37%) tumors, including 6/12 melanocytomas, 0/3 intermediate-grade melanocytomas, and 1/4 melanomas. These GNAQ-mutated tumors were predominantly located around the spinal cord (6/7). One melanoma carried a BRAF point mutation that is frequently found in cutaneous melanomas (c.1799 T>A, p.V600E), raising the question whether this is a metastatic rather than a primary tumor. No HRAS or NRAS mutations were detected. We conclude that somatic mutations in the GNAQ gene at codon 209 are a frequent event in primary melanocytic neoplasms of the CNS. This finding provides new insight in the pathogenesis of these lesions and suggests that GNAQ-dependent mitogen-activated kinase signaling is a promising therapeutic target in these tumors. The prognostic and predictive value of GNAQ mutations in primary melanocytic lesions of the CNS needs to be determined in future studies

    BMP-6 promotes E-cadherin expression through repressing δEF1 in breast cancer cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bone morphogenetic protein-6 (BMP-6) is critically involved in many developmental processes. Recent studies indicate that BMP-6 is closely related to tumor differentiation and metastasis.</p> <p>Methods</p> <p>Quantitative RT-PCR was used to determine the expression of BMP-6, E-cadherin, and δEF1 at the mRNA level in MCF-7 and MDA-MB-231 breast cancer cells, as well as in 16 breast cancer specimens. Immunoblot analysis was used to measure the expression of δEF1 at the protein level in δEF1-overexpressing and δEF1-interfered MDA-MB-231 cells. Luciferase assay was used to determine the rhBMP-6 or δEF1 driven transcriptional activity of the E-cadherin promoter in MDA-MB-231 cells. Quantitative CHIP assay was used to detect the direct association of δEF1 with the E-cadherin proximal promoter in MDA-MB-231 cells.</p> <p>Results</p> <p>MCF-7 breast cancer cells, an ER<sup>+ </sup>cell line that expressed high levels of BMP-6 and E-cadherin exhibited very low levels of δEF1 transcript. In contrast, MDA-MB-231 cells, an ER<sup>- </sup>cell line had significantly reduced BMP-6 and E-cadherin mRNA levels, suggesting an inverse correlation between BMP-6/E-cadherin and δEF1. To determine if the same relationship exists in human tumors, we examined tissue samples of breast cancer from human subjects. In 16 breast cancer specimens, the inverse correlation between BMP-6/E-cadherin and δEF1 was observed in both ER<sup>+ </sup>cases (4 of 8 cases) and ER<sup>- </sup>cases (7 of 8 cases). Further, we found that BMP-6 inhibited δEF1 transcription, resulting in an up-regulation of E-cadherin mRNA expression. This is consistent with our analysis of the E-cadherin promoter demonstrating that BMP-6 was a potent transcriptional activator. Interestingly, ectopic expression of δEF1 was able to block BMP-6-induced transactivation of E-cadherin, whereas RNA interference-mediated down-regulation of endogenous δEF1 in breast cancer cells abolished E-cadherin transactivation by BMP-6. In addition to down-regulating the expression of δEF1, BMP-6 also physically dislodged δEF1 from E-cadherin promoter to allow the activation of E-cadherin transcription.</p> <p>Conclusion</p> <p>We conclude that repression of δEF1 plays a key role in mediating BMP-6-induced transcriptional activation of E-cadherin in breast cancer cells. Consistent with the fact that higher level of δEF1 expression is associated with more invasive phenotype of breast cancer cells, our collective data suggests that δEF1 is likely the switch through which BMP-6 restores E-cadherin-mediated cell-to-cell adhesion and prevents breast cancer metastasis.</p

    Using the ecology model to describe the impact of asthma on patterns of health care

    Get PDF
    BACKGROUND: Asthma changes both the volume and patterns of healthcare of affected people. Most studies of asthma health care utilization have been done in selected insured populations or in a single site such as the emergency department. Asthma is an ambulatory sensitive care condition making it important to understand the relationship between care in all sites across the health service spectrum. Asthma is also more common in people with fewer economic resources making it important to include people across all types of insurance and no insurance categories. The ecology of medical care model may provide a useful framework to describe the use of health services in people with asthma compared to those without asthma and identify subgroups with apparent gaps in care. METHODS: This is a case-control study using the 1999 U.S. Medical Expenditure Panel Survey. Cases are school-aged children (6 to 17 years) and young adults (18 to 44 years) with self-reported asthma. Controls are from the same age groups who have no self-reported asthma. Descriptive analyses and risk ratios are placed within the ecology of medical care model and used to describe and compare the healthcare contact of cases and controls across multiple settings. RESULTS: In 1999, the presence of asthma significantly increased the likelihood of an ambulatory care visit by 20 to 30% and more than doubled the likelihood of making one or more visits to the emergency department (ED). Yet, 18.8% of children and 14.5% of adults with asthma (over a million Americans) had no ambulatory care visits for asthma. About one in 20 to 35 people with asthma (5.2% of children and 3.6% of adults) were seen in the ED or hospital but had no prior or follow-up ambulatory care visits. These Americans were more likely to be uninsured, have no usual source of care and live in metropolitan areas. CONCLUSION: The ecology model confirmed that having asthma changes the likelihood and pattern of care for Americans. More importantly, the ecology model identified a subgroup with asthma who sought only emergent or hospital services

    Essential Role of Chromatin Remodeling Protein Bptf in Early Mouse Embryos and Embryonic Stem Cells

    Get PDF
    We have characterized the biological functions of the chromatin remodeling protein Bptf (Bromodomain PHD-finger Transcription Factor), the largest subunit of NURF (Nucleosome Remodeling Factor) in a mammal. Bptf mutants manifest growth defects at the post-implantation stage and are reabsorbed by E8.5. Histological analyses of lineage markers show that Bptf−/− embryos implant but fail to establish a functional distal visceral endoderm. Microarray analysis at early stages of differentiation has identified Bptf-dependent gene targets including homeobox transcriptions factors and genes essential for the development of ectoderm, mesoderm, and both definitive and visceral endoderm. Differentiation of Bptf−/− embryonic stem cell lines into embryoid bodies revealed its requirement for development of mesoderm, endoderm, and ectoderm tissue lineages, and uncovered many genes whose activation or repression are Bptf-dependent. We also provide functional and physical links between the Bptf-containing NURF complex and the Smad transcription factors. These results suggest that Bptf may co-regulate some gene targets of this pathway, which is essential for establishment of the visceral endoderm. We conclude that Bptf likely regulates genes and signaling pathways essential for the development of key tissues of the early mouse embryo

    RNA-sequencing-based comparative analysis of human hepatic progenitor cells and their niche from alcoholic steatohepatitis livers

    Get PDF
    Hepatic progenitor cells (HPCs) are small cells with a relative large oval nucleus and a scanty cytoplasm situated in the canals of Hering that express markers of (immature) hepatocytes and cholangiocytes. HPCs are present in large numbers in alcoholic steatohepatitis (ASH), one of the leading causes of chronic liver disease. To date, the mechanisms responsible for proliferation and differentiation of human HPCs are still poorly understood and the role of HPCs in ASH development is unknown. In this study, we aimed to characterise human HPCs and their interactions with other cells through comparison, on both protein and RNA level, of HPC-enriched cell populations from adult human liver tissue using different isolation methods. Fresh human liver tissue was collected from ASH explant livers and HPC-enriched cell populations were obtained via four different isolation methods: side population (SP), epithelial cell adhesion molecule (EpCAM) and trophoblast antigen 2 (TROP-2) membrane marker isolation and laser capture microdissection. Gene expression profiles of fluorescent-activated cell-sorted HPCs, whole liver extracts and laser microdissected HPC niches were determined by RNA-sequencing. Immunohistochemical evaluation of the isolated populations indicated the enrichment of HPCs in the SP, EpCAM+ and TROP-2+ cell populations. Pathway analysis of the transcription profiles of human HPCs showed an enrichment and activation of known HPC pathways like Wnt/β-catenin, TWEAK and HGF. Integration of the HPC niche profile suggests autocrine signalling by HPCs (TNFα, PDGFB and VEGFA) as well as paracrine signalling from the surrounding niche cells including MIF and IGF-1. In addition, we identified IL-17 A signalling as a potentially novel pathway in HPC biology. In conclusion, we provide the first RNA-seq-based, comparative transcriptome analysis of isolated human HPCs from ASH patients and revealed active signalling between HPCs and their surrounding niche cells in ASH livers and suggest that HPCs can actively contribute to liver inflammation.status: publishe

    Transforming growth factor beta signalling in vitro and in vivo: activin ligand-receptor interaction, Smad5 in vasculogenesis, and repression of target genes by the deltaEF1/ZEB-related SIP1 in the vertebrate embryo

    No full text
    The identification and characterization of components of the transforming growth factor beta (TGFbeta) signalling pathway are proceeding at a very fast pace. To illustrate a number of our activities in this field, we first summarize our work aiming at the selection from a large collection of single residue substitution mutants of two activin A polypeptides in which D27 and K102, respectively, have been modified. This work has highlighted the importance of K102 and its positive charge for binding to activin type II receptors. Activin K102E, which did not bind to high-affinity receptor complexes, may be a valuable beta chain, when incorporated in recombinant inhibin to unambiguously detect novel inhibin binding sites at the cell surface. We then illustrate how Smad5 knockout mice and an overexpression approach with a truncated TGFbeta type II receptor in the mouse embryo can contribute to the identification of a novel TGFbeta-->TbetaRII/ALK1-->Smad5 pathway in endothelial cells in the embryo proper and the yolk sac vasculature. We conclude with a summary of our results with a Smad-interacting transcriptional repressor but focus on its biological significance in the vertebrate embryo.status: publishe
    corecore