116 research outputs found

    A machine learning-based tool for open cluster membership determination in Gaia DR3

    Full text link
    Membership studies characterising open clusters with Gaia data, most using DR2, are so far limited at magnitude G = 18 due to astrometric uncertainties at the faint end. Our goal is to extend current open cluster membership lists with faint members and to characterise the low-mass end, which members are important for many applications, in particular for ground-based spectroscopic surveys. We use a deep neural network architecture to learn the distribution of highly reliable open cluster member stars around known clusters. After that, we use the trained network to estimate new open cluster members based on their similarities in a high-dimensional space, five-dimensional astrometry plus the three photometric bands. Due to the improved astrometric precisions of Gaia DR3 with respect to DR2, we are able to homogeneously detect new faint member stars (G > 18) for the known open cluster population. Our methodology can provide extended membership lists for open clusters down to the limiting magnitude of Gaia, which will enable further studies to characterise the open cluster population, e.g. estimation of their masses, or their dynamics. These extended membership lists are also ideal target lists for forthcoming ground-based spectroscopic surveys.Comment: 10 pages, 6 figures. Submitted to Astronomy & Astrophysic

    Sequence dependent effect of paclitaxel on gemcitabine metabolism in relation to cell cycle and cytotoxicity in non-small-cell lung cancer cell lines

    Get PDF
    Gemcitabine and paclitaxel are active agents in the treatment of non-small-cell lung cancer (NSCLC). To optimize treatment drug combinations, simultaneously and 4 and 24 h intervals, were studied using DNA flow cytometry and multiple drug effect analysis in the NSCLC cell lines H460, H322 and Lewis Lung. All combinations resulted in comparable cytotoxicity, varying from additivity to antagonism (combination index: 1.0–2.6). Gemcitabine caused a S (48%) and G1 (64%) arrest at IC-50 and 10 × IC-50 concentrations, respectively. Paclitaxel induced G2/M arrest (70%) which was maximal within 24 h at 10 × IC-50. Simultaneous treatment increased S-phase arrest, while at the 24 h interval after 72 h the first drug seemed to dominate the effect. Apoptosis was more pronounced when paclitaxel preceded gemcitabine (20% for both intervals) as compared to the reverse sequence (8%, P = 0.173 for the 4 h and 12%, P = 0.051 for the 24 h time interval). In H460 cells, paclitaxel increased 2-fold the accumulation of dFdCTP, the active metabolite of gemcitabine, in contrast to H322 cells. Paclitaxel did not affect deoxycytidine kinase levels, but ribonucleotide levels increased possibly explaining the increase in dFdCTP. Paclitaxel did not affect gemcitabine incorporation into DNA, but seemed to increase incorporation into RNA. Gemcitabine almost completely inhibited DNA synthesis in both cell lines (70–89%), while paclitaxel had a minor effect and did not increase that of gemcitabine. In conclusion, various gemcitabine–paclitaxel combinations did not show sequence dependent cytotoxic effects; all combinations were not more than additive. However, since paclitaxel increased dFdCTP accumulation, gemcitabine incorporation into RNA and the apoptotic index, the administration of paclitaxel prior to gemcitabine might be favourable as compared to reversed sequences. © 2000 Cancer Research Campaig

    Phase I and pharmacokinetic study of the novel chemoprotector BNP7787 in combination with cisplatin and attempt to eliminate the hydration schedule

    Get PDF
    BNP7787 (disodium 2,2′-dithio-bis-ethane sulphonate; Tavocept™) is a novel agent developed to protect against cisplatin (cis-diammine-dichloroplatinum(II))-associated chronic toxicities. In this study, we determined the recommended dose of BNP7787 when preceding a fixed dose of cisplatin, the pharmacokinetics (PKs) and the possible reduction of saline hydration. Patients with advanced solid tumours received BNP7787 in escalating doses of 4.1–41 g m−2 as a 15-min intravenous (i.v.) infusion followed by cisplatin 75 mg m−2 as a 60-min i.v. infusion together with pre- and postcisplatin saline hydration in a volume of 2200 ml; cycles were repeated every 3 weeks. PK was carried out using BNP7787, cisplatin and the combination. Twenty-five patients were enrolled in stage I of the study to determine the recommended dose of BNP7787. No dose-limiting toxicity was reached. The highest dose level of 41 g m−2 resulted in a low incidence of grade 2 toxicities, being nausea and vomiting, dry mouth or bad taste and i.v. injection site discomfort. Doses of BNP7787 ⩾18.4 g m−2 did not show a drug interaction between BNP7787 and cisplatin. In stage II of the study, patients received a fixed dose of BNP7787 of 18.4 g m−2 preceding cisplatin and were entered in prespecified reduced saline hydration steps. A total of 21 patients in cohorts of six to nine patients received reduced saline hydration of 1600 ml (step A), 1000 ml (step B) and 500 ml (step C). In step C, two out of six evaluable patients experienced grade 1 nephrotoxicity. Cisplatin acute toxicities in all 46 patients were as expected. Only five patients complained of paresthesias grade 1 and six developed slight audiometric changes. Partial tumour response was observed in four patients and stable disease in 15 patients. In conclusion, BNP7787 was tolerated well up to doses of 41 g m−2. The recommended dose of 18.4 g m−2 enabled safe reduction of the saline hydration schedule for cisplatin to 1000 ml. Further studies will assess whether BNP7787 offers protection against platinum-related late side effects

    Enhanced Uridine Bioavailability Following Administration of a Triacetyluridine-Rich Nutritional Supplement

    Get PDF
    Uridine is a therapy for hereditary orotic aciduria and is being investigated in other disorders caused by mitochondrial dysfunction, including toxicities resulting from treatment with nucleoside reverse transcriptase inhibitors in HIV. Historically, the use of uridine as a therapeutic agent has been limited by poor bioavailability. A food supplement containing nucleosides, NucleomaxX®, has been reported to raise plasma uridine to supraphysiologic levels

    Importance of dose-schedule of 5-aza-2'-deoxycytidine for epigenetic therapy of cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The inactivation of tumor suppressor genes (TSGs) by aberrant DNA methylation plays an important role in the development of malignancy. Since this epigenetic change is reversible, it is a potential target for chemotherapeutic intervention using an inhibitor of DNA methylation, such as 5-aza-2'-deoxycytidine (DAC). Although clinical studies show that DAC has activity against hematological malignancies, the optimal dose-schedule of this epigenetic agent still needs to be established.</p> <p>Methods</p> <p>Clonogenic assays were performed on leukemic and tumor cell lines to evaluate the <it>in vitro </it>antineoplastic activity of DAC. The reactivation of TSGs and inhibition of DNA methylation by DAC were investigated by reverse transcriptase-PCR and Line-1 assays. The <it>in vivo </it>antineoplastic activity of DAC administered as an i.v. infusion was evaluated in mice with murine L1210 leukemia by measurement of survival time, and in mice bearing murine EMT6 mammary tumor by excision of tumor after chemotherapy for an <it>in vitro </it>clonogenic assay.</p> <p>Results</p> <p>Increasing the DAC concentration and duration of exposure produced a greater loss of clonogenicity for both human leukemic and tumor cell lines. The reactivation of the TSGs (<it>p57KIP2 </it>in HL-60 leukemic cells and <it>p16CDKN2A </it>in Calu-6 lung carcinoma cells) and the inhibition of global DNA methylation in HL-60 leukemic cells increased with DAC concentration. In mice with L1210 leukemia and in mice bearing EMT6 tumors, the antineoplastic action of DAC also increased with the dose. The plasma level of DAC that produced a very potent antineoplastic effect in mice with leukemia or solid tumors was > 200 ng/ml (> 1 μM).</p> <p>Conclusion</p> <p>We have shown that intensification of the DAC dose markedly increased its antineoplastic activity in mouse models of cancer. Our data also show that there is a good correlation between the concentrations of DAC that reduce <it>in vitro </it>clonogenicity, reactivate TSGs and inhibit DNA methylation. These results suggest that the antineoplastic action of DAC is related to its epigenetic action. Our observations provide a strong rationale to perform clinical trials using dose intensification of DAC to maximize the chemotherapeutic potential of this epigenetic agent in patients with cancer.</p

    Potential impacts of prolonged absence of influenza virus circulation on subsequent epidemics

    Get PDF
    BACKGROUND: During the first two years of the COVID-19 pandemic, the circulation of seasonal influenza viruses was unprecedentedly low. This led to concerns that the lack of immune stimulation to influenza viruses combined with waning antibody titres could lead to increased susceptibility to influenza in subsequent seasons, resulting in larger and more severe epidemics. METHODS: We analyzed historical influenza virus epidemiological data from 2003-2019 to assess the historical frequency of near-absence of seasonal influenza virus circulation and its impact on the size and severity of subsequent epidemics. Additionally, we measured haemagglutination inhibition-based antibody titres against seasonal influenza viruses using longitudinal serum samples from 165 healthy adults, collected before and during the COVID-19 pandemic, and estimated how antibody titres against seasonal influenza waned during the first two years of the pandemic. FINDINGS: Low country-level prevalence of influenza virus (sub)types over one or more years occurred frequently before the COVID-19 pandemic and had relatively small impacts on subsequent epidemic size and severity. Additionally, antibody titres against seasonal influenza viruses waned negligibly during the first two years of the pandemic. INTERPRETATION: The commonly held notion that lulls in influenza virus circulation, as observed during the COVID-19 pandemic, will lead to larger and/or more severe subsequent epidemics might not be fully warranted, and it is likely that post-lull seasons will be similar in size and severity to pre-lull seasons. FUNDING: European Research Council, Netherlands Organization for Scientific Research, Royal Dutch Academy of Sciences, Public Health Service of Amsterdam. RESEARCH IN CONTEXT: Evidence before this study: During the first years of the COVID-19 pandemic, the incidence of seasonal influenza was unusually low, leading to widespread concerns of exceptionally large and/or severe influenza epidemics in the coming years. We searched PubMed and Google Scholar using a combination of search terms (i.e., "seasonal influenza", "SARS-CoV-2", "COVID-19", "low incidence", "waning rates", "immune protection") and critically considered published articles and preprints that studied or reviewed the low incidence of seasonal influenza viruses since the start of the COVID-19 pandemic and its potential impact on future seasonal influenza epidemics. We found a substantial body of work describing how influenza virus circulation was reduced during the COVID-19 pandemic, and a number of studies projecting the size of future epidemics, each positing that post-pandemic epidemics are likely to be larger than those observed pre-pandemic. However, it remains unclear to what extent the assumed relationship between accumulated susceptibility and subsequent epidemic size holds, and it remains unknown to what extent antibody levels have waned during the COVID-19 pandemic. Both are potentially crucial for accurate prediction of post-pandemic epidemic sizes.Added value of this study: We find that the relationship between epidemic size and severity and the magnitude of circulation in the preceding season(s) is decidedly more complex than assumed, with the magnitude of influenza circulation in preceding seasons having only limited effects on subsequent epidemic size and severity. Rather, epidemic size and severity are dominated by season-specific effects unrelated to the magnitude of circulation in the preceding season(s). Similarly, we find that antibody levels waned only modestly during the COVID-19 pandemic.Implications of all the available evidence: The lack of changes observed in the patterns of measured antibody titres against seasonal influenza viruses in adults and nearly two decades of epidemiological data suggest that post-pandemic epidemic sizes will likely be similar to those observed pre-pandemic, and challenge the commonly held notion that the widespread concern that the near-absence of seasonal influenza virus circulation during the COVID-19 pandemic, or potential future lulls, are likely to result in larger influenza epidemics in subsequent years
    • …
    corecore