31 research outputs found

    Artifical intelligence in rectal cancer

    Get PDF

    Standardised convolutional filtering for radiomics

    Full text link
    The Image Biomarker Standardisation Initiative (IBSI) aims to improve reproducibility of radiomics studies by standardising the computational process of extracting image biomarkers (features) from images. We have previously established reference values for 169 commonly used features, created a standard radiomics image processing scheme, and developed reporting guidelines for radiomic studies. However, several aspects are not standardised. Here we present a preliminary version of a reference manual on the use of convolutional image filters in radiomics. Filters, such as wavelets or Laplacian of Gaussian filters, play an important part in emphasising specific image characteristics such as edges and blobs. Features derived from filter response maps have been found to be poorly reproducible. This reference manual forms the basis of ongoing work on standardising convolutional filters in radiomics, and will be updated as this work progresses.Comment: 62 pages. For additional information see https://theibsi.github.io

    Repeatability of Multiparametric Prostate MRI Radiomics Features

    Full text link
    In this study we assessed the repeatability of the values of radiomics features for small prostate tumors using test-retest Multiparametric Magnetic Resonance Imaging (mpMRI) images. The premise of radiomics is that quantitative image features can serve as biomarkers characterizing disease. For such biomarkers to be useful, repeatability is a basic requirement, meaning its value must remain stable between two scans, if the conditions remain stable. We investigated repeatability of radiomics features under various preprocessing and extraction configurations including various image normalization schemes, different image pre-filtering, 2D vs 3D texture computation, and different bin widths for image discretization. Image registration as means to re-identify regions of interest across time points was evaluated against human-expert segmented regions in both time points. Even though we found many radiomics features and preprocessing combinations with a high repeatability (Intraclass Correlation Coefficient (ICC) > 0.85), our results indicate that overall the repeatability is highly sensitive to the processing parameters (under certain configurations, it can be below 0.0). Image normalization, using a variety of approaches considered, did not result in consistent improvements in repeatability. There was also no consistent improvement of repeatability through the use of pre-filtering options, or by using image registration between timepoints to improve consistency of the region of interest localization. Based on these results we urge caution when interpreting radiomics features and advise paying close attention to the processing configuration details of reported results. Furthermore, we advocate reporting all processing details in radiomics studies and strongly recommend making the implementation available

    Gross tumour volume delineation in anal cancer on T2-weighted and diffusion-weighted MRI - Reproducibility between radiologists and radiation oncologists and impact of reader experience level and DWI image quality

    Get PDF
    Abstract Purpose To assess how gross tumour volume (GTV) delineation in anal cancer is affected by interobserver variations between radiologists and radiation oncologists, expertise level, and use of T2-weighted MRI (T2W-MRI) vs. diffusion-weighted imaging (DWI), and to explore effects of DWI quality. Methods and materials We retrospectively analyzed the MRIs (T2W-MRI and b800-DWI) of 25 anal cancer patients. Four readers (Senior and Junior Radiologist; Senior and Junior Radiation Oncologist) independently delineated GTVs, first on T2W-MRI only and then on DWI (with reference to T2W-MRI). Maximum Tumour Diameter (MTD) was calculated from each GTV. Mean GTVs/MTDs were compared between readers and between T2W-MRI vs. DWI. Interobserver agreement was calculated as Intraclass Correlation Coefficient (ICC), Dice Similarity Coefficient (DSC) and Hausdorff Distance (HD). DWI image quality was assessed using a 5-point artefact scale. Results Interobserver agreement between radiologists vs. radiation oncologists and between junior vs. senior readers was good–excellent, with similar agreement for T2W-MRI and DWI (e.g. ICCs 0.72–0.94 for T2W-MRI and 0.68–0.89 for DWI). There was a trend towards smaller GTVs on DWI, but only for the radiologists (P = 0.03–0.07). Moderate-severe DWI-artefacts were observed in 11/25 (44%) cases. Agreement tended to be lower in these cases. Conclusion Overall interobserver agreement for anal cancer GTV delineation on MRI is good for both radiologists and radiation oncologists, regardless of experience level. Use of DWI did not improve agreement. DWI artefacts affecting GTV delineation occurred in almost half of the patients, which may severely limit the use of DWI for radiotherapy planning if no steps are undertaken to avoid them

    Outcomes and potential impact of a virtual hands-on training program on MRI staging confidence and performance in rectal cancer

    Get PDF
    Objectives: To explore the potential impact of a dedicated virtual training course on MRI staging confidence and performance in rectal cancer. // Methods: Forty-two radiologists completed a stepwise virtual training course on rectal cancer MRI staging composed of a pre-course (baseline) test with 7 test cases (5 staging, 2 restaging), a 1-day online workshop, 1 month of individual case readings (n = 70 cases with online feedback), a live online feedback session supervised by two expert faculty members, and a post-course test. The ESGAR structured reporting templates for (re)staging were used throughout the course. Results of the pre-course and post-course test were compared in terms of group interobserver agreement (Krippendorf’s alpha), staging confidence (perceived staging difficulty), and diagnostic accuracy (using an expert reference standard). // Results: Though results were largely not statistically significant, the majority of staging variables showed a mild increase in diagnostic accuracy after the course, ranging between + 2% and + 17%. A similar trend was observed for IOA which improved for nearly all variables when comparing the pre- and post-course. There was a significant decrease in the perceived difficulty level (p = 0.03), indicating an improved diagnostic confidence after completion of the course. // Conclusions: Though exploratory in nature, our study results suggest that use of a dedicated virtual training course and web platform has potential to enhance staging performance, confidence, and interobserver agreement to assess rectal cancer on MRI virtual training and could thus be a good alternative (or addition) to in-person training. // Clinical relevance statement: Rectal cancer MRI reporting quality is highly dependent on radiologists’ expertise, stressing the need for dedicated training/teaching. This study shows promising results for a virtual web-based training program, which could be a good alternative (or addition) to in-person training. // Key Points: • Rectal cancer MRI reporting quality is highly dependent on radiologists’ expertise, stressing the need for dedicated training and teaching. • Using a dedicated virtual training course and web-based platform, encouraging first results were achieved to improve staging accuracy, diagnostic confidence, and interobserver agreement. • These exploratory results suggest that virtual training could thus be a good alternative (or addition) to in-person training

    Outcomes and potential impact of a virtual hands-on training program on MRI staging confidence and performance in rectal cancer

    Get PDF
    Objectives: To explore the potential impact of a dedicated virtual training course on MRI staging confidence and performance in rectal cancer. Methods: Forty-two radiologists completed a stepwise virtual training course on rectal cancer MRI staging composed of a pre-course (baseline) test with 7 test cases (5 staging, 2 restaging), a 1-day online workshop, 1 month of individual case readings (n = 70 cases with online feedback), a live online feedback session supervised by two expert faculty members, and a post-course test. The ESGAR structured reporting templates for (re)staging were used throughout the course. Results of the pre-course and post-course test were compared in terms of group interobserver agreement (Krippendorf’s alpha), staging confidence (perceived staging difficulty), and diagnostic accuracy (using an expert reference standard). Results: Though results were largely not statistically significant, the majority of staging variables showed a mild increase in diagnostic accuracy after the course, ranging between + 2% and + 17%. A similar trend was observed for IOA which improved for nearly all variables when comparing the pre- and post-course. There was a significant decrease in the perceived difficulty level (p = 0.03), indicating an improved diagnostic confidence after completion of the course. Conclusions: Though exploratory in nature, our study results suggest that use of a dedicated virtual training course and web platform has potential to enhance staging performance, confidence, and interobserver agreement to assess rectal cancer on MRI virtual training and could thus be a good alternative (or addition) to in-person training. Clinical relevance statement: Rectal cancer MRI reporting quality is highly dependent on radiologists’ expertise, stressing the need for dedicated training/teaching. This study shows promising results for a virtual web-based training program, which could be a good alternative (or addition) to in-person training. Key Points: • Rectal cancer MRI reporting quality is highly dependent on radiologists’ expertise, stressing the need for dedicated training and teaching. • Using a dedicated virtual training course and web-based platform, encouraging first results were achieved to improve staging accuracy, diagnostic confidence, and interobserver agreement. • These exploratory results suggest that virtual training could thus be a good alternative (or addition) to in-person training

    Development and multicenter validation of a multiparametric imaging model to predict treatment response in rectal cancer

    Get PDF
    Funding Information: This study has received funding from the Dutch Cancer Society (project number 10138). Publisher Copyright: © 2023, The Author(s).Objectives: To develop and validate a multiparametric model to predict neoadjuvant treatment response in rectal cancer at baseline using a heterogeneous multicenter MRI dataset. Methods: Baseline staging MRIs (T2W (T2-weighted)-MRI, diffusion-weighted imaging (DWI) / apparent diffusion coefficient (ADC)) of 509 patients (9 centres) treated with neoadjuvant chemoradiotherapy (CRT) were collected. Response was defined as (1) complete versus incomplete response, or (2) good (Mandard tumor regression grade (TRG) 1–2) versus poor response (TRG3-5). Prediction models were developed using combinations of the following variable groups: (1) Non-imaging: age/sex/tumor-location/tumor-morphology/CRT-surgery interval (2) Basic staging: cT-stage/cN-stage/mesorectal fascia involvement, derived from (2a) original staging reports, or (2b) expert re-evaluation (3) Advanced staging: variables from 2b combined with cTN-substaging/invasion depth/extramural vascular invasion/tumor length (4) Quantitative imaging: tumour volume + first-order histogram features (from T2W-MRI and DWI/ADC) Models were developed with data from 6 centers (n = 412) using logistic regression with the Least Absolute Shrinkage and Selector Operator (LASSO) feature selection, internally validated using repeated (n = 100) random hold-out validation, and externally validated using data from 3 centers (n = 97). Results: After external validation, the best model (including non-imaging and advanced staging variables) achieved an area under the curve of 0.60 (95%CI=0.48–0.72) to predict complete response and 0.65 (95%CI=0.53–0.76) to predict a good response. Quantitative variables did not improve model performance. Basic staging variables consistently achieved lower performance compared to advanced staging variables. Conclusions: Overall model performance was moderate. Best results were obtained using advanced staging variables, highlighting the importance of good-quality staging according to current guidelines. Quantitative imaging features had no added value (in this heterogeneous dataset). Clinical relevance statement: Predicting tumour response at baseline could aid in tailoring neoadjuvant therapies for rectal cancer. This study shows that image-based prediction models are promising, though are negatively affected by variations in staging quality and MRI acquisition, urging the need for harmonization. Key Points: This multicenter study combining clinical information and features derived from MRI rendered disappointing performance to predict response to neoadjuvant treatment in rectal cancer. Best results were obtained with the combination of clinical baseline information and state-of-the-art image-based staging variables, highlighting the importance of good quality staging according to current guidelines and staging templates. No added value was found for quantitative imaging features in this multicenter retrospective study. This is likely related to acquisition variations, which is a major problem for feature reproducibility and thus model generalizability.Peer reviewe

    The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights

    Get PDF
    Standardizing convolutional filters that enhance specific structures and patterns in medical imaging enables reproducible radiomics analyses, improving consistency and reliability for enhanced clinical insights. Filters are commonly used to enhance specific structures and patterns in images, such as vessels or peritumoral regions, to enable clinical insights beyond the visible image using radiomics. However, their lack of standardization restricts reproducibility and clinical translation of radiomics decision support tools. In this special report, teams of researchers who developed radiomics software participated in a three-phase study (September 2020 to December 2022) to establish a standardized set of filters. The first two phases focused on finding reference filtered images and reference feature values for commonly used convolutional filters: mean, Laplacian of Gaussian, Laws and Gabor kernels, separable and nonseparable wavelets (including decomposed forms), and Riesz transformations. In the first phase, 15 teams used digital phantoms to establish 33 reference filtered images of 36 filter configurations. In phase 2, 11 teams used a chest CT image to derive reference values for 323 of 396 features computed from filtered images using 22 filter and image processing configurations. Reference filtered images and feature values for Riesz transformations were not established. Reproducibility of standardized convolutional filters was validated on a public data set of multimodal imaging (CT, fluorodeoxyglucose PET, and T1-weighted MRI) in 51 patients with soft-tissue sarcoma. At validation, reproducibility of 486 features computed from filtered images using nine configurations Ă— three imaging modalities was assessed using the lower bounds of 95% CIs of intraclass correlation coefficients. Out of 486 features, 458 were found to be reproducible across nine teams with lower bounds of 95% CIs of intraclass correlation coefficients greater than 0.75. In conclusion, eight filter types were standardized with reference filtered images and reference feature values for verifying and calibrating radiomics software packages. A web-based tool is available for compliance checking

    METhodological RadiomICs Score (METRICS): a quality scoring tool for radiomics research endorsed by EuSoMII

    Get PDF
    Purpose: To propose a new quality scoring tool, METhodological RadiomICs Score (METRICS), to assess and improve research quality of radiomics studies. Methods: We conducted an online modified Delphi study with a group of international experts. It was performed in three consecutive stages: Stage#1, item preparation; Stage#2, panel discussion among EuSoMII Auditing Group members to identify the items to be voted; and Stage#3, four rounds of the modified Delphi exercise by panelists to determine the items eligible for the METRICS and their weights. The consensus threshold was 75%. Based on the median ranks derived from expert panel opinion and their rank-sum based conversion to importance scores, the category and item weights were calculated. Result: In total, 59 panelists from 19 countries participated in selection and ranking of the items and categories. Final METRICS tool included 30 items within 9 categories. According to their weights, the categories were in descending order of importance: study design, imaging data, image processing and feature extraction, metrics and comparison, testing, feature processing, preparation for modeling, segmentation, and open science. A web application and a repository were developed to streamline the calculation of the METRICS score and to collect feedback from the radiomics community. Conclusion: In this work, we developed a scoring tool for assessing the methodological quality of the radiomics research, with a large international panel and a modified Delphi protocol. With its conditional format to cover methodological variations, it provides a well-constructed framework for the key methodological concepts to assess the quality of radiomic research papers. Critical relevance statement: A quality assessment tool, METhodological RadiomICs Score (METRICS), is made available by a large group of international domain experts, with transparent methodology, aiming at evaluating and improving research quality in radiomics and machine learning. Key points: • A methodological scoring tool, METRICS, was developed for assessing the quality of radiomics research, with a large international expert panel and a modified Delphi protocol. • The proposed scoring tool presents expert opinion-based importance weights of categories and items with a transparent methodology for the first time. • METRICS accounts for varying use cases, from handcrafted radiomics to entirely deep learning-based pipelines. • A web application has been developed to help with the calculation of the METRICS score (https://metricsscore.github.io/metrics/METRICS.html) and a repository created to collect feedback from the radiomics community (https://github.com/metricsscore/metrics). Graphical Abstract: [Figure not available: see fulltext.

    On Representative Elementary Volumes of Grayscale Micro-CT Images of Porous Media

    No full text
    The concept of linking pore-scale data to continuum-scale characteristics of porous media relies on the existence of a representative elementary volume (REV). The current techniques for estimating REVs require access to segmented micro-computed tomographic (micro-CT) images and computations of petrophysical properties which are computationally intensive and time-consuming. Herein, a texture characterization method called the Gray-Level Size Zone Matrix (GLSZM) is applied directly to raw grayscale micro-CT images. GLSZM representations of 3D micro-CT images capture information regarding the connectivity of gray-level intensities, termed as "size-zones." Statistical descriptors of pore space are calculated based on GLSZM to understand the connectivity of low gray-level intensities. These GLSZM statistics capture microstructural fluctuations and offer insights into the impact of grayscale heterogeneity on REV size. This approach allows REV sizes to be estimated directly using grayscale micro-CT images, in a reproducible, less time-consuming and computationally efficient manner. Plain Language Summary Representative elementary volumes or REVs are defined as the smallest volume of the rock sample that encompasses the region of local heterogeneities for the length scale and property being investigated. X-ray micro-computed tomographic (micro-CT) images capture the rock structure as different gray-level intensities. Traditionally, raw or grayscale micro-CT images undergo a series of image processing steps to obtain segmented micro-CT images wherein a label is assigned to pore space and minerals. REVs are then estimated based on properties calculated from these segmented images. While it is preferred that information-rich raw micro-CT images be used for such an analysis, there are limitations on properties that can be calculated. To tackle this challenge, we introduce a novel texture characterization technique that can be directly applied to raw micro-CT images. This approach captures valuable information about gray-level intensities and their connectivity in a 3D space. The statistics then allow us to describe important aspects of the pore spaces that can otherwise only be inferred from their binary equivalent. In addition to this, using this texture characterization technique would allow us to infer REV sizes in a robust and computationally efficient manner
    corecore