345 research outputs found

    Deriving stage at diagnosis from multiple population-based sources: colorectal and lung cancer in England.

    Get PDF
    BACKGROUND: Stage at diagnosis is a strong predictor of cancer survival. Differences in stage distributions and stage-specific management help explain geographic differences in cancer outcomes. Stage information is thus essential to improve policies for cancer control. Despite recent progress, stage information is often incomplete. Data collection methods and definition of stage categories are rarely reported. These inconsistencies may result in assigning conflicting stage for single tumours and confound the interpretation of international comparisons and temporal trends of stage-specific cancer outcomes. We propose an algorithm that uses multiple routine, population-based data sources to obtain the most complete and reliable stage information possible. METHODS: Our hierarchical approach derives a single stage category per tumour prioritising information deemed of best quality from multiple data sets and various individual components of tumour stage. It incorporates rules from the Union for International Cancer Control TNM classification of malignant tumours. The algorithm is illustrated for colorectal and lung cancer in England. We linked the cancer-specific Clinical Audit data (collected from clinical multi-disciplinary teams) to national cancer registry data. We prioritise stage variables from the Clinical Audit and added information from the registry when needed. We compared stage distribution and stage-specific net survival using two sets of definitions of summary stage with contrasting levels of assumptions for dealing with missing individual TNM components. This exercise extends a previous algorithm we developed for international comparisons of stage-specific survival. RESULTS: Between 2008 and 2012, 163 915 primary colorectal cancer cases and 168 158 primary lung cancer cases were diagnosed in adults in England. Using the most restrictive definition of summary stage (valid information on all individual TNM components), colorectal cancer stage completeness was 56.6% (from 33.8% in 2008 to 85.2% in 2012). Lung cancer stage completeness was 76.6% (from 57.3% in 2008 to 91.4% in 2012). Stage distribution differed between strategies to define summary stage. Stage-specific survival was consistent with published reports. CONCLUSIONS: We offer a robust strategy to harmonise the derivation of stage that can be adapted for other cancers and data sources in different countries. The general approach of prioritising good-quality information, reporting sources of individual TNM variables, and reporting of assumptions for dealing with missing data is applicable to any population-based cancer research using stage. Moreover, our research highlights the need for further transparency in the way stage categories are defined and reported, acknowledging the limitations, and potential discrepancies of using readily available stage variables

    2010 SSO John Wayne Clinical Research Lecture: Rectal Cancer Outcome Improvements in Europe: Population-Based Outcome Registrations will Conquer the World

    Get PDF
    During the past two decades, rectal cancer treatment has improved considerably in Europe. Clinical trials played a crucial role in improving surgical techniques, (neo)adjuvant treatment schedules, imaging, and pathology. However, there is still a wide variation in outcome after rectal cancer. In most western health care systems, efforts are made to reduce hospital variation by focusing on selective referral and encouraging patients to seek care in high-volume hospitals. On the other hand, the expertise for diagnosis and treatment of common types of cancer should be preferably widespread and easily accessible for all patients. As an alternative to volume-based referral, hospitals and surgeons can improve their results by learning from their own outcome statistics and those from colleagues treating a similar patient group. Several European surgical (colo)rectal audits have led to improvements with a greater impact than any of the adjuvant therapies currently under study. However, differences remain between European countries, which cannot be easily explained. To generate the best care for colorectal cancer in the whole of Europe and to meet political and public demands for transparency, the European CanCer Organisation (ECCO) initiated an international, multidisciplinary, outcome-based quality improvement program: European Registration of Cancer Care (EURECCA). The goal is to create a multidisciplinary European registration structure for patient, tumor, and treatment characteristics linked to outcome registration. Clinical trials will always play a major role in improving rectal cancer treatment. To further improve outcomes and diminish variation, EURECCA will establish the basis for a strong, multidisciplinary, international audit structure that can be used as a template for similar projects worldwide

    Erythematous nodes, urticarial rash and arthralgias in a large pedigree with NLRC4-related autoinflammatory disease, expansion of the phenotype

    Get PDF
    Autoinflammatory disorders (AID) are a heterogeneous group of diseases, characterized by an unprovoked innate immune response, resulting in recurrent or ongoing systemic inflammation and fever1-3. Inflammasomes are protein complexes with an essential role in pyroptosis and the caspase-1-mediated activation of the proinflammatory cytokines IL-1β, IL-17 and IL-18

    National external quality assessment for next-generation sequencing-based diagnostics of primary immunodeficiencies

    Get PDF
    Dutch genome diagnostic centers (GDC) use next-generation sequencing (NGS)-based diagnostic applications for the diagnosis of primary immunodeficiencies (PIDs). The interpretation of genetic variants in many PIDs is complicated because of the phenotypic and genetic heterogeneity. To analyze uniformity of variant filtering, interpretation, and reporting in NGS-based diagnostics for PID, an external quality assessment was performed. Four main Dutch GDCs participated in the quality assessment. Unannotated variant call format (VCF) files of two PID patient analyses per laboratory were distributed among the four GDCs, analyzed, and interpreted (eight analyses in total). Variants that would be reported to the clinician and/or advised for further investigation were compared between the centers. A survey measuring the experiences of clinical laboratory geneticists was part of the study. Analysis of samples with confirmed diagnoses showed that all centers reported at least the variants classified as likely pathogenic (LP) or pathogenic (P) variants in all samples, except for variants in two genes (PSTPIP1 and BTK). The absence of clinical information complicated correct classification of variants. In this external quality assessment, the final interpretation and conclusions of the genetic analyses were uniform among the four participating genetic centers. Clinical and immunological data provided by a medical specialist are required to be able to draw proper conclusions from genetic data

    Implementation of Early Next-Generation Sequencing for Inborn Errors of Immunity:A Prospective Observational Cohort Study of Diagnostic Yield and Clinical Implications in Dutch Genome Diagnostic Centers

    Get PDF
    OBJECTIVE: Inborn errors of immunity (IEI) are a heterogeneous group of disorders, affecting different components of the immune system. Over 450 IEI related genes have been identified, with new genes continually being recognized. This makes the early application of next-generation sequencing (NGS) as a diagnostic method in the evaluation of IEI a promising development. We aimed to provide an overview of the diagnostic yield and time to diagnosis in a cohort of patients suspected of IEI and evaluated by an NGS based IEI panel early in the diagnostic trajectory in a multicenter setting in the Netherlands. STUDY DESIGN: We performed a prospective observational cohort study. We collected data of 165 patients with a clinical suspicion of IEI without prior NGS based panel evaluation that were referred for early NGS using a uniform IEI gene panel. The diagnostic yield was assessed in terms of definitive genetic diagnoses, inconclusive diagnoses and patients without abnormalities in the IEI gene panel. We also assessed time to diagnosis and clinical implications. RESULTS: For children, the median time from first consultation to diagnosis was 119 days versus 124 days for adult patients (U=2323; p=0.644). The median turn-around time (TAT) of genetic testing was 56 days in pediatric patients and 60 days in adult patients (U=1892; p=0.191). A definitive molecular diagnosis was made in 25/65 (24.6%) of pediatric patients and 9/100 (9%) of adults. Most diagnosed disorders were identified in the categories of immune dysregulation (n=10/25; 40%), antibody deficiencies (n=5/25; 20%), and phagocyte diseases (n=5/25; 20%). Inconclusive outcomes were found in 76/165 (46.1%) patients. Within the patient group with a genetic diagnosis, a change in disease management occurred in 76% of patients. CONCLUSION: In this cohort, the highest yields of NGS based evaluation for IEI early in the diagnostic trajectory were found in pediatric patients, and in the disease categories immune dysregulation and phagocyte diseases. In cases where a definitive diagnosis was made, this led to important disease management implications in a large majority of patients. More research is needed to establish a uniform diagnostic pathway for cases with inconclusive diagnoses, including variants of unknown significance
    corecore