13 research outputs found

    Discovery and Selection of Hepatitis B Virus-Derived T Cell Epitopes for Global Immunotherapy Based on Viral Indispensability, Conservation, and HLA-Binding Strength

    Get PDF
    Immunotherapy represents an attractive option for the treatment of chronic hepatitis B virus (HBV) infection. The HBV proteins polymerase (Pol) and HBx are of special interest for antigen-specific immunotherapy because they are essential for viral replication and have been associated with viral control (Pol) or are still expressed upon viral DNA integration (HBx). Here, we scored all currently described HBx- and Pol-derived epitope sequences for viral indispensability and conservation across all HBV genotypes. This yielded 7 HBx-derived and 26 Po

    Cellular surface plasmon resonance-based detection of anti-HPA-1a antibody glycosylation in fetal and neonatal alloimmune thrombocytopenia

    Get PDF
    Fetal and neonatal alloimmune thrombocytopenia (FNAIT) can occur due to maternal IgG antibodies targeting platelet antigens, causing life-threatening bleeding in the neonate. However, the disease manifests itself in only a fraction of pregnancies, most commonly with anti-HPA-1a antibodies. We found that in particular, the core fucosylation in the IgG-Fc tail is highly variable in anti-HPA-1a IgG, which strongly influences the binding to leukocyte IgG-Fc receptors IIIa/b (FcγRIIIa/b). Currently, gold-standard IgG-glycoanalytics rely on complicated methods (e.g., mass spectrometry (MS)) that are not suited for diagnostic purposes. Our aim was to provide a simplified method to quantify the biological activity of IgG antibodies targeting cells. We developed a cellular surface plasmon resonance imaging (cSPRi) technique based on FcγRIII-binding to IgG-opsonized cells and compared the results with MS. The strength of platelet binding to FcγR was monitored under flow using both WT FcγRIIIa (sensitive to Fc glycosylation status) and mutant FcγRIIIa-N162A (insensitive to Fc glycosylation status). The quality of the anti-HPA-1a glycosylation was monitored as the ratio of binding signals from the WT versus FcγRIIIa-N162A, using glycoengineered recombinant anti-platelet HPA-1a as a standard. The method was validated with 143 plasma samples with anti-HPA-1a antibodies analyzed by MS with known clinical outcomes and tested for validation of the method. The ratio of patient signal from the WT versus FcγRIIIa-N162A correlated with the fucosylation of the HPA-1a antibodies measured by MS (r=-0.52). Significantly, FNAIT disease severity based on Buchanan bleeding score was similarly discriminated against by MS and cSPRi. In conclusion, the use of IgG receptors, in this case, FcγRIIIa, on SPR chips can yield quantitative and qualitative information on platelet-bound anti-HPA-1a antibodies. Using opsonized cells in this manner circumvents the need for purification of specific antibodies and laborious MS analysis to obtain qualitative antibody traits such as IgG fucosylation, for which no clinical test is currently available. Proteomic

    Amino acid substitutions within HLA-B*27- restricted T cell epitopes prevent recognition by hepatitis delta virus-specific CD8+ T cells

    Get PDF
    Virus-specific CD8 T cell response seems to play a significant role in the outcome of hepatitis delta virus (HDV) infection. However, the HDV-specific T cell epitope repertoire and mechanisms of CD8 T cell failure in HDV infection have been poorly characterized. We therefore aimed to characterize HDV-specific CD8 T cell epitopes and the impacts of viral mutations on immune escape. In this study, we predicted peptide epitopes binding the most frequent human leukocyte antigen (HLA) types and assessed their HLA binding capacities. These epitopes were characterized in HDV-infected patients by intracellular gamma interferon (IFN-γ) staining. Sequence analysis of large hepatitis delta antigen (L-HDAg) and HLA typing were performed in 104 patients. The impacts of substitutions within epitopes on the CD8 T cell response were evaluated experimentally and by in silico studies. We identified two HLA-B*27-restricted CD8 T cell epitopes within L-HDAg. These novel epitopes are located in a relatively conserved region of L-HDAg. However, we detected molecular footprints within the epitopes in HLA-B*27-positive patients with chronic HDV infections. The variant peptides were not cross-recognized in HLA-B*27-positive patients with resolved HDV infections, indicating that the substitutions represent viral escape mutations. Molecular modeling of HLA-B*27 complexes with the L-HDAg epitope and its potential viral escape mutations indicated that the structural and electrostatic properties of the bound peptides differ considerably at the T cell receptor interface, which provides a possible molecular explanation for the escape mechanism. This viral escape from the HLA-B*27-restricted CD8 T cell response correlates with a chronic outcome of hepatitis D infection. T cell failure resulting from immune escape may contribute to the high chronicity rate in HDV infection. © 2018 American Society for Microbiology

    Altered Fc glycosylation of anti-HLA alloantibodies in hemato-oncological patients receiving platelet transfusions

    No full text
    Background The formation of alloantibodies directed against class I human leukocyte antigens (HLA) continues to be a clinically challenging complication after platelet transfusions, which can lead to platelet refractoriness (PR) and occurs in approximately 5%-15% of patients with chronic platelet support. Interestingly, anti-HLA IgG levels in alloimmunized patients do not seem to predict PR, suggesting functional or qualitative differences among anti-HLA IgG. The binding of these alloantibodies to donor platelets can result in rapid clearance after transfusion, presumably via Fc gamma R-mediated phagocytosis and/or complement activation, which both are affected by the IgG-Fc glycosylation. Objectives To characterize the Fc glycosylation profile of anti-HLA class I antibodies formed after platelet transfusion and to investigate its effect on clinical outcome. Patients/Methods We screened and captured anti-HLA class I antibodies (anti-HLA A2, anti-HLA A24, and anti-HLA B7) developed after platelet transfusions in hemato-oncology patients, who were included in the PREPAReS Trial. Using liquid chromatography-mass spectrometry, we analyzed the glycosylation profiles of total and anti-HLA IgG1 developed over time. Subsequently, the glycosylation data was linked to the patients' clinical information and posttransfusion increments. Results The glycosylation profile of anti-HLA antibodies was highly variable between patients. In general, Fc galactosylation and sialylation levels were elevated compared to total plasma IgG, which correlated negatively with the platelet count increment. Furthermore, high levels of afucosylation were observed for two patients. Conclusions These differences in composition of anti-HLA Fc-glycosylation profiles could potentially explain the variation in clinical severity between patients.Proteomic

    Characterization of CD8+ T-cell response in acute and resolved hepatitis A virus infection.

    Full text link
    Abstract BACKGROUND & AIMS: In contrast to the infection with other hepatotropic viruses, hepatitis A virus (HAV) always causes acute self-limited hepatitis, although the role for virus-specific CD8 T cells in viral containment is unclear. Herein, we analyzed the T cell response in patients with acute hepatitis by utilizing a set of overlapping peptides and predicted HLA-A2 binders from the polyprotein. METHODS: A set of 11 predicted peptides from the HAV polyprotein, identified as potential binders, were synthesized. Peripheral blood mononuclear cells (PBMCs) from patients were tested for IFNγ secretion after stimulation with these peptides and ex vivo with HLA-A2 tetramers. Phenotyping was carried out by staining with the activation marker CD38 and the memory marker CD127. RESULTS: Eight out of 11 predicted HLA-A2 binders showed a high binding affinity and five of them were recognized by CD8+ T cells from patients with hepatitis A. There were significant differences in the magnitude of the responses to these five peptides. One was reproducibly immunodominant and the only one detectable ex vivo by tetramer staining of CD8+ T cells. These cells have an activated phenotype (CD38hi CD127lo) during acute infection. Three additional epitopes were identified in HLA-A2 negative patients, most likely representing epitopes restricted by other HLA-class I-alleles (HLA-A11, B35, B40). CONCLUSIONS: Patients with acute hepatitis A have a strong multi-specific T cell response detected by ICS. With the tetramer carrying the dominant HLA-A2 epitope, HAV-specific and activated CD8+ T cells could be detected ex vivo. This first description of the HAV specific CTL-epitopes will allow future studies on strength, breadth, and kinetics of the T-cell response in hepatitis A

    Biological and structural characterization of murine TRALI antibody reveals increased Fc-mediated complement activation

    No full text
    Transfusion-related acute lung injury (TRALI) remains a leading cause of transfusion-related deaths. In most cases, anti-leukocyte antibodies in the transfusion product trigger TRALI, but not all anti-leukocyte antibodies cause TRALI. It has been shown that the anti-major histocompatibility complex (MHC) class I antibody 34-1-2S (anti-H-2K(d)) causes TRALI in BALB/c mice (MHC class I haplotype H-2K(d)), whereas SF1.1.10 (anti-H-2K(d)) does not. In C57BL/6 mice (MHC class I haplotype H-2K(b)), TRALI only occurs when anti-MHC class I antibody AF6-88.5.5.3 (anti-H-2K(b)) is administered together with a high dose of 34-1-2S. It remains unknown which specific antibody characteristics are responsible for eliciting TRALI. We therefore investigated several biological and structural features of 34-1-2S compared with other anti-MHC class I antibodies, which on their own do not cause TRALI: SF1.1.10 and AF6-88.5.5.3. No substantial differences were observed between the TRALI-causing 34-1-2S and the TRALI-resistant SF1.1.10 regarding binding affinity to H-2K(d). Regarding binding affinity to H-2K(b), only AF6-88.5.5.3 potently bound to H-2K(b), whereas 34-1-2S exhibited weak but significant cross-reactivity. Furthermore, the binding affinity to Fc gamma Rs as well as the Fc glycan composition seemed to be similar for all antibodies. Similar Fc glycosylation profiles were also observed for human TRALI-causing donor anti-HLA antibodies compared with human anti-HLA antibodies from control donors. 34-1-2S, however, displayed superior complement activation capacity, which was fully Fc dependent and not significantly dependent on Fc glycosylation. We conclude that TRALI induction is not correlated with Fab- and Fc-binding affinities for antigen and Fc gamma Rs, respectively, nor with the composition of Fc glycans; but increased Fc-mediated complement activation is correlated with TRALI induction.Proteomic
    corecore