7 research outputs found

    Neuroenhancement in Military Personnel::Conceptual and Methodological Promises and Challenges

    Get PDF
    Military personnel face harsh conditions that strain their physical and mental well-being, depleting resources necessary for sustained operational performance. Future operations will impose even greater demands on soldiers in austere environments with limited support, and new training and technological approaches are essential. This report highlights the progress in cognitive neuroenhancement research, exploring techniques such as neuromodulation and neurofeedback, and emphasizes the inherent challenges and future directions in the field of cognitive neuroenhancement for selection, training, operations, and recovery

    Adjuvant Effect of Orally Applied Preparations Containing Non-Digestible Polysaccharides on Influenza Vaccination in Healthy Seniors: A Double-Blind, Randomised, Controlled Pilot Trial.

    Get PDF
    Senior individuals can suffer from immunosenescence and novel strategies to bolster the immune response could contribute to healthy ageing. In this double-blind, randomised, controlled pilot trial, we investigated the ability of non-digestible polysaccharide (NPS) preparations to enhance the immune response in a human vaccination model. In total, 239 subjects (aged 50-79 years) were randomised to consume one of five different NPS (yeast β-glucan (YBG), shiitake β-glucan (SBG), oat β-glucan (OBG), arabinoxylan (AX), bacterial exopolysaccharide (EPS)) or control (CTRL) product daily for five weeks. After two weeks of intervention, subjects were vaccinated with seasonal influenza vaccine. The post-vaccination increases in haemagglutination inhibition antibody titres and seroprotection rate against the influenza strains were non-significantly enhanced in the NPS intervention groups compared to CTRL. Specifically, a trend towards a higher mean log2 fold increase was observed in the AX group (uncorrected p = 0.074) combined with a trend for an increased seroprotection rate, AX group (48.7%) compared to CTRL (25.6%) (uncorrected p = 0.057), for the influenza A H1N1 strain. Subjects consuming AX also had a reduced incidence of common colds compared to CTRL (1 vs. 8; p = 0.029 in Fisher exact test). No adverse effects of NPS consumption were reported. The findings of this pilot study warrant further research to study AX as an oral adjuvant to support vaccine efficacy

    Neuroenhancement in Military Personnel: Conceptual and Methodological Promises and Challenges

    Get PDF
    Military personnel are subjected to prolonged operations in harsh and undesirable conditions characterized by severe environmental exposures, resource scarcity, and physical and mental encumbrance. Prolonged military operations under these conditions can degrade the already limited perceptual, cognitive, and emotional resources necessary to sustain performance on mission-related tasks. The complex multi-domain operations of the future battlespace are expected to further increase demands at even the lowest levels of the military echelon. These demands will be characterized with increasingly prolonged operations of small units in austere environments with limited resupply and degraded technological capabilities. It is therefore critical to identify new training and technological approaches to enable sustained, optimized, and/or enhanced performance of military personnel. Research in the international defence science community, academia, and industry has developed several promising neuroscientific strategies for pursuing this goal, including neuromodulatory and neurofeedback techniques. The present paper reviews the state of the art in cognitive neuroenhancement research and development from six participating nations: Canada, Germany, Italy, The Netherlands, United Kingdom, and the United States of America. Six neuromodulation techniques are reviewed, including transcranial magnetic stimulation (TMS), transcranial focused ultrasound stimulation (tFUS), transcranial electrical stimulation (tES), transcutaneous peripheral nerve stimulation (tPNS), photobiomodulation, and cranial electrotherapy stimulation (CES). Three neurofeedback techniques are considered, including the use of electroencephalography (EEG), functional magnetic resonance imaging (fMRI), and functional near-infrared spectroscopy (fNIRS) for monitoring brain states, with feedback loops enabled through machine learning and artificial intelligence. Participating nations summarize basic and applied research leveraging one or more of these neuromodulation and neurofeedback technologies for the purposes of enhancing Warfighter cognitive performance. The report continues by detailing the inherent methodological challenges of cognitive neuroenhancement and other considerations for conducting research, development, and engineering in this domain. The report concludes with a discussion of promising future directions in neuroenhancement, including biosensing, improved mechanistic and predictive modelling and software tools, developing non-invasive forms of deep-brain stimulation, testing emerging theoretical models of brain and behavior, and developing closed-loop neuroenhancement and humanmachine teaming methods. Emphasis is placed on the conceptual and methodological promises and challenges associated with planning, executing, and interpreting neuroenhancement research and development efforts in the context of Warfighter selection, training, operations, and recovery

    What Is Targeted When We Train Working Memory? Evidence From a Meta-Analysis of the Neural Correlates of Working Memory Training Using Activation Likelihood Estimation

    Get PDF
    Working memory (WM) is the system responsible for maintaining and manipulating information, in the face of ongoing distraction. In turn, WM span is perceived to be an individual-differences construct reflecting the limited capacity of this system. Recently, however, there has been some evidence to suggest that WM capacity can increase through training, raising the possibility that training can functionally alter the neural structures supporting WM. To address the hypothesis that the neural substrates underlying WM are targeted by training, we conducted a meta-analysis of functional magnetic resonance imaging (fMRI) studies of WM training using Activation Likelihood Estimation (ALE). Our results demonstrate that WM training is associated exclusively with decreases in blood oxygenation level-dependent (BOLD) responses in clusters within the fronto-parietal system that underlie WM, including the bilateral inferior parietal lobule (BA 39/40), middle (BA 9) and superior (BA 6) frontal gyri, and medial frontal gyrus bordering on the cingulate gyrus (BA 8/32). We discuss the various psychological and physiological mechanisms that could be responsible for the observed reductions in the BOLD signal in relation to WM training, and consider their implications for the construct of WM span as a limited resource

    Empagliflozin in Patients with Chronic Kidney Disease

    No full text
    Background The effects of empagliflozin in patients with chronic kidney disease who are at risk for disease progression are not well understood. The EMPA-KIDNEY trial was designed to assess the effects of treatment with empagliflozin in a broad range of such patients. Methods We enrolled patients with chronic kidney disease who had an estimated glomerular filtration rate (eGFR) of at least 20 but less than 45 ml per minute per 1.73 m(2) of body-surface area, or who had an eGFR of at least 45 but less than 90 ml per minute per 1.73 m(2) with a urinary albumin-to-creatinine ratio (with albumin measured in milligrams and creatinine measured in grams) of at least 200. Patients were randomly assigned to receive empagliflozin (10 mg once daily) or matching placebo. The primary outcome was a composite of progression of kidney disease (defined as end-stage kidney disease, a sustained decrease in eGFR to < 10 ml per minute per 1.73 m(2), a sustained decrease in eGFR of & GE;40% from baseline, or death from renal causes) or death from cardiovascular causes. Results A total of 6609 patients underwent randomization. During a median of 2.0 years of follow-up, progression of kidney disease or death from cardiovascular causes occurred in 432 of 3304 patients (13.1%) in the empagliflozin group and in 558 of 3305 patients (16.9%) in the placebo group (hazard ratio, 0.72; 95% confidence interval [CI], 0.64 to 0.82; P < 0.001). Results were consistent among patients with or without diabetes and across subgroups defined according to eGFR ranges. The rate of hospitalization from any cause was lower in the empagliflozin group than in the placebo group (hazard ratio, 0.86; 95% CI, 0.78 to 0.95; P=0.003), but there were no significant between-group differences with respect to the composite outcome of hospitalization for heart failure or death from cardiovascular causes (which occurred in 4.0% in the empagliflozin group and 4.6% in the placebo group) or death from any cause (in 4.5% and 5.1%, respectively). The rates of serious adverse events were similar in the two groups. Conclusions Among a wide range of patients with chronic kidney disease who were at risk for disease progression, empagliflozin therapy led to a lower risk of progression of kidney disease or death from cardiovascular causes than placebo
    corecore