4 research outputs found

    Seroprevalence and risk factors of Q fever in goats on commercial dairy goat farms in the Netherlands, 2009-2010

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The aim of this study was to estimate the seroprevalence of <it>Coxiella burnetii </it>in dairy goat farms in the Netherlands and to identify risk factors for farm and goat seropositivity before mandatory vaccination started. We approached 334 eligible farms with more than 100 goats for serum sampling and a farm questionnaire. Per farm, median 21 goats were sampled. A farm was considered positive when at least one goat tested ELISA positive.</p> <p>Results</p> <p>In total, 2,828 goat serum samples from 123 farms were available. Farm prevalence was 43.1% (95%CI: 34.3%-51.8%). Overall goat seroprevalence was 21.4% (95%CI: 19.9%-22.9%) and among the 53 positive farms 46.6% (95%CI: 43.8%-49.3%). Multivariable logistic regression analysis included 96 farms and showed that farm location within 8 kilometres proximity from a bulk milk PCR positive farm, location in a municipality with high cattle density (≥ 100 cattle per square kilometre), controlling nuisance animals through covering airspaces, presence of cats or dogs in the goat stable, straw imported from abroad or unknown origin and a herd size above 800 goats were independent risk factors associated with Q fever on farm level. At animal level almost identical risk factors were found, with use of windbreak curtain and artificial insemination as additional risk factors.</p> <p>Conclusion</p> <p>In 2009-2010, the seroprevalence in dairy goats in the Netherlands increased on animal and farm level compared to a previous study in 2008. Risk factors suggest spread from relatively closely located bulk milk-infected small ruminant farms, next to introduction and spread from companion animals, imported straw and use of artificial insemination. In-depth studies investigating the role of artificial insemination and bedding material are needed, while simultaneously general biosecurity measures should be updated, such as avoiding companion animals and vermin entering the stables, next to advice on farm stable constructions on how to prevent introduction and minimize airborne transmission from affected dairy goat farms to prevent further spread to the near environment.</p

    General practitioner practices in requesting laboratory tests for patients with gastroenteritis in the Netherlands, 2001–2002

    Get PDF
    BACKGROUND: The objective of this study was to estimate the (selective) proportion of patients consulting their GP for an episode of gastroenteritis for whom laboratory tests were requested. In addition adherence of GPs to the guidelines for diagnostic test regime was ascertained. METHODS: Data were collected from a GP network in the Netherlands. Information was also collected on the reason for requesting the test, test specifications, and test results. RESULTS: For 12% of the GP patients with gastroenteritis, a stool sample was requested and tested for enteric pathogens. In most patients, the duration, followed by severity of complaints or a visit to a specific, high-risk country were reported as reasons to request laboratory diagnostics. Tests were requested most often in summer months and in February. Campylobacter (requested for 87% of the tests), Salmonella (84%), Shigella (78%) and Yersinia (56%) were most frequently included in the stool tests. Campylobacter was detected most often in patients. CONCLUSION: Test requests did not always comply with existing knowledge of the etiology of gastroenteritis in GP patients and were not always consistent with the Dutch GP guidelines. Therefore, the data of this study can be used to develop educational approaches for GP's as well as for revision of the guidelines

    Risk Factors for Norovirus, Sapporo-like Virus, and Group A Rotavirus Gastroenteritis

    Get PDF
    Viral pathogens are the most common causes of gastroenteritis in the community. To identify modes of transmission and opportunities for prevention, a case-control study was conducted and risk factors for gastroenteritis attributable to norovirus (NV), Sapporo-like virus (SLV), and rotavirus were studied. For NV gastroenteritis, having a household member with gastroenteritis, contact with a person with gastroenteritis outside the household, and poor food-handling hygiene were associated with illness (population attributable risk fractions [PAR] of 17%, 56%, and 47%, respectively). For SLV gastroenteritis, contact with a person with gastroenteritis outside the household was associated with a higher risk (PAR 60%). For rotavirus gastroenteritis, contact with a person with gastroenteritis outside the household and food-handling hygiene were associated with a higher risk (PAR 86% and 46%, respectively). Transmission of these viral pathogens occurs primarily from person to person. However, for NV gastroenteritis, foodborne transmission seems to play an important role

    Serological cross-sectional studies on salmonella incidence in eight European countries: no correlation with incidence of reported cases

    No full text
    <p>Abstract</p> <p>Background</p> <p>Published incidence rates of human salmonella infections are mostly based on numbers of stool culture-confirmed cases reported to public health surveillance. These cases constitute only a small fraction of all cases occurring in the community. The extent of underascertainment is influenced by health care seeking behaviour and sensitivity of surveillance systems, so that reported incidence rates from different countries are not comparable. We performed serological cross-sectional studies to compare infection risks in eight European countries independent of underascertainment.</p> <p>Methods</p> <p>A total of 6,393 sera from adults in Denmark, Finland, France, Italy, Poland, Romania, Sweden, and The Netherlands were analysed, mostly from existing serum banks collected in the years 2003 to 2008. Immunoglobulin A (IgA), IgM, and IgG against salmonella lipopolysaccharides were measured by in-house mixed ELISA. We converted antibody concentrations to estimates of infection incidence (‘sero-incidence’) using a Bayesian backcalculation model, based on previously studied antibody decay profiles in persons with culture-confirmed salmonella infections. We compared sero-incidence with incidence of cases reported through routine public health surveillance and with published incidence estimates derived from infection risks in Swedish travellers to those countries.</p> <p>Results</p> <p>Sero-incidence of salmonella infections ranged from 56 (95% credible interval 8–151) infections per 1,000 person-years in Finland to 547 (343–813) in Poland. Depending on country, sero-incidence was approximately 100 to 2,000 times higher than incidence of culture-confirmed cases reported through routine surveillance, with a trend for an inverse correlation. Sero-incidence was significantly correlated with incidence estimated from infection risks in Swedish travellers.</p> <p>Conclusions</p> <p>Sero-incidence estimation is a new method to estimate and compare the incidence of salmonella infections in human populations independent of surveillance artefacts. Our results confirm that comparison of reported incidence between countries can be grossly misleading, even within the European Union. Because sero-incidence includes asymptomatic infections, it is not a direct measure of burden of illness. But, pending further validation of this novel method, it may be a promising and cost-effective way to assess infection risks and to evaluate the effectiveness of salmonella control programmes across countries or over time.</p
    corecore