231 research outputs found

    Two-Phase Oil-Water Empirical Correlation Models for SCAL and Petrophysical Properties in Intermediate Wet Sandstone Reservoirs

    Get PDF
    A consensus has long been established that the best secondary oil recovery through waterflood is attained in intermediate wet reservoir systems. In the absence of special core analysis (SCAL) data during the initial stages of field evaluation, experimentally-derived correlations are generated in this study for preliminary evaluation purposes. Currently, it is identified that ambiguity exists between petrophysical relationships in intermediate wet reservoirs. Clarifying these relationships provides us with further understanding into maximizing oil recovery in such systems. Hence, the main objective of this study is to analyse and provide further insights into the relationships between petrophysical properties, which are ultimately vital for reservoir simulations. The correlations are generated through linear regression analysis from experimental core measurements. It has been proven that the most reliable correlations are essentially empirical rather than theoretical, especially with the case of relative permeability. The variation of SCAL parameters and correlations generated are studied as a function of wettability, permeability, porosity, initial water saturation and rock type. It is observed that residual oil saturation is moderately correlated to Amott-Harvey wettability in an upward curvilinear relationship while scaled endpoint relative permeability in two-phase oil-water system is strongly and linearly correlated to wettability. When investigating the effects of permeability, one must take into account that having too low or too high value might present anomalies in the correlations. The general trend for intermediate wettability reservoir is that a higher permeability shows a shift towards less water-wet behaviour (shift to oil-wet). Moreover, for initial water saturation and wettability, the trend is towards more water-wet at higher initial water saturation. Meanwhile, porosity is not strongly correlated to any of the parameters except permeability

    The reliability of the patellotrochlear index on magnetic resonance imaging for measuring patellofemoral height

    Get PDF
    Background: The purpose of this study was to determine the inter-and intra-observer reliability of the patellotrochlear index (PTI) on magnetic resonance images (MRI) in patients with patellofemoral pain. The correlation between the PTI measured on MRI and the modified Insall-Salvati (MIS) ratio measured on radiographs was also assessed. Methods: The PTI was assessed on MRI images and the MIS ratio on radiographs of 66 knees of 62 patients. Assessment was performed by two orthopaedic surgeons, one orthopaedic surgery registrar, two radiologists and one radiology registrar. Correlation coefficients, standard errors of measurement and limits of agreement were calculated for the PTI. To assess the association between the PTI and the MIS ratio, the Pearson's correlation coefficient was calculated. Results: The PTI showed good interobserver reliability (intraclass correlation coefficient (ICC) 0.79; 95% confidence interval (CI) 0.73-0.85) and excellent intra-observer reliability (ICC 0.90; 95% CI 0.89-0.91). The standard error of measurement was 0.05 and limits of agreement with the mean +/- 0.09. A very weak and not significant correlation was found between the PTI and the MIS (r = 0.02; P = 0.77). Conclusions: The PTI showed good interobserver reliability and excellent intra-observer reliability. In order to conclude which measurement method of assessing patellar height is truly the most reliable, future studies should investigate agreement parameters (standard error of measurement, limits of agreement) besides solely correlation coefficients. We found a very weak correlation between the PTI and the MIS which suggests that at least one index has poor validity. Future validity studies on indices to assess patellar height are necessary. (c) 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

    Willing and able: action-state orientation and the relation between procedural justice and employee cooperation

    Get PDF
    Existing justice theory explains why fair procedures motivate employees to adopt cooperative goals, but it fails to explain how employees strive towards these goals. We study self-regulatory abilities that underlie goal striving; abilities that should thus affect employees’ display of cooperative behavior in response to procedural justice. Building on action control theory, we argue that employees who display effective self-regulatory strategies (action oriented employees) display relatively strong cooperative behavioral responses to fair procedures. A multisource field study and a laboratory experiment support this prediction. A subsequent experiment addresses the process underlying this effect by explicitly showing that action orientation facilitates attainment of the cooperative goals that people adopt in response to fair procedures, thus facilitating the display of actual cooperative behavior. This goal striving approach better integrates research on the relationship between procedural justice and employee cooperation in the self-regulation and the work motivation literature. It also offers organizations a new perspective on making procedural justice effective in stimulating employee cooperation by suggesting factors that help employees reach their adopted goals

    Smad gene expression in pulmonary fibroblasts: indications for defective ECM repair in COPD

    Get PDF
    Background: Chronic Obstructive Pulmonary Disease ( COPD) is characterized by defective extracellular matrix (ECM) turnover as a result of prolonged cigarette smoking. Fibroblasts have a central role in ECM turnover. The TGF beta induced Smad pathway provides intracellular signals to regulate ECM production. We address the following hypothesis: fibroblasts have abnormal expression of genes in the Smad pathway in COPD, resulting in abnormal proteoglycan modulation, the ground substance of ECM. Methods: We compared gene expression of the Smad pathway at different time points after stimulation with TGF beta, TNF or cigarette smoke extract (CSE) in pulmonary fibroblasts of GOLD stage II and IV COPD patients, and controls. Results: Without stimulation, all genes were similarly expressed in control and COPD fibroblasts. TGF beta stimulation: downregulation of Smad3 and upregulation of Smad7 occurred in COPD and control fibroblasts, indicating a negative feedback loop upon TGF beta stimulation. CSE hardly influenced gene expression of the TGF beta-Smad pathway in control fibroblasts, whereas it reduced Smad3 and enhanced Smad7 gene expression in COPD fibroblasts. Furthermore, decorin gene expression decreased by all stimulations in COPD but not in control fibroblasts. Conclusion: Fibroblasts of COPD patients and controls differ in their regulation of the Smad pathway, the contrast being most pronounced under CSE exposure. This aberrant responsiveness of COPD fibroblasts to CSE might result in an impaired tissue repair capability and is likely important with regard to the question why only a subset of smokers demonstrates an excess ECM destruction under influence of cigarette smoking

    Flow cytometric quantification of tumour endothelial cells; an objective alternative for microvessel density assessment

    Get PDF
    Assessment of microvessel density by immunohistochemical staining is subject to a considerable inter-observer variation, and this has led to variability in correlation between microvessel density and clinical outcome in different studies. In order to improve the method of microvessel density measurement in tumour biopsies, we have developed a rapid, objective and quantitative method using flow cytometry on frozen tissues. Frozen tissue sections of archival tumour material were enzymatically digested. The single-cell suspension was stained for CD31 and CD34 for flow cytometry. The number of endothelial cells was quantified using light scatter- and fluorescence-characteristics. Tumour endothelial cells were detectable in a single cell suspension, and the percentage of endothelial cells detected in 32 colon carcinomas correlated highly (r=0.84, P<0.001) with the immunohistochemical assessment of microvessel density. Flow cytometric endothelial cells quantification was found to be more sensitive especially at lower levels of immunohistochemical microvessel density measurement. The current method was found to be applicable for various tumour types and has the major advantage that it provides a retrospective and quantitative approach to the angiogenic potential of tumours

    Cancer-associated fibroblast-derived Gremlin 1 promotes breast cancer progression

    Get PDF
    Background: Bone morphogenetic proteins (BMPs) have been reported to maintain epithelial integrity and to antagonize the transforming growth factor β (TGFβ)-induced epithelial to mesenchymal transition. The expression of soluble BMP antagonists is dysregulated in cancers and interrupts proper BMP signaling in breast cancer. Methods: In this study, we mined the prognostic role of BMP antagonists GREMLIN 1 (GREM1) in primary breast cancer tissues using in-house and publicly available datasets. We determined which cells express GREM1 RNA using in situ hybridization (ISH) on a breast cancer tissue microarray. The effects of Grem1 on the properties of breast cancer cells were assessed by measuring the mesenchymal/stem cell marker expression and functional cell-based assays for stemness and invasion. The role of Grem1 in breast cancer-associated fibroblast (CAF) activation was measured by analyzing the expression of fibroblast markers, phalloidin staining, and collagen contraction assays. The role of Grem1 in CAF-induced breast cancer cell intravasation and extravasation was studied by utilizing xenograft zebrafish breast cancer (co-) injection models. Results: Expression analysis of clinical breast cancer datasets revealed that high expression of GREM1 in breast cancer stroma is correlated with a poor prognosis regardless of the molecular subtype. The large majority of human breast cancer ce

    The TGF-β/Smad pathway induces breast cancer cell invasion through the up-regulation of matrix metalloproteinase 2 and 9 in a spheroid invasion model system

    Full text link
    Transforming growth factor-beta (TGF-beta) has opposing roles in breast cancer progression by acting as a tumor suppressor in the initial phase, but stimulating invasion and metastasis at later stages. In contrast to the mechanisms by which TGF-beta induces growth arrest, the pathways that mediate tumor invasion are not well understood. Here, we describe a TGF-beta-dependent invasion assay system consisting of spheroids of MCF10A1 normal breast epithelial cells (M1) and RAS-transformed (pre-)malignant derivatives (M2 and M4) embedded in collagen gels. Both basal and TGF-beta-induced invasion of these cell lines was found to correlate with their tumorigenic potential; M4 showing the most aggressive behavior and M1 showing the least. Basal invasion was strongly inhibited by the TGF-beta receptor kinase inhibitor SB-431542, indicating the involvement of autocrine TGF-beta or TGF-beta-like activity. TGF-beta-induced invasion in premalignant M2 and highly malignant M4 cells was also inhibited upon specific knockdown of Smad3 or Smad4. Interestingly, both a broad spectrum matrix metalloproteinase (MMP) inhibitor and a selective MMP2 and MMP9 inhibitor mitigated TGF-beta-induced invasion of M4 cells, while leaving basal invasion intact. In line with this, TGF-beta was found to strongly induce MMP2 and MMP9 expression in a Smad3- and Smad4-dependent manner. This collagen-embedded spheroid system therefore offers a valuable screening model for TGF-beta/Smad- and MMP2- and MMP9-dependent breast cancer invasion.Urolog

    The BMP pathway either enhances or inhibits the Wnt pathway depending on the SMAD4 and p53 status in CRC

    Get PDF
    Background: Constitutive Wnt activation is essential for colorectal cancer (CRC) initiation but also underlies the cancer stem cell phenotype, metastasis and chemosensitivity. Importantly Wnt activity is still modulated as evidenced by higher Wnt activity at the invasive front of clonal tumours termed the β-catenin paradox. SMAD4 and p53 mutation status and the bone morphogenetic protein (BMP) pathway are known to affect Wnt activity. The combination of SMAD4 loss, p53 mutations and BMP signalling may integrate to influence Wnt signalling and explain the β-catenin paradox. Methods: We analysed the expression patterns of SMAD4, p53 and β-catenin at the invasive front of CRCs using immunohistochemistry. We activated BMP signalling in CRC cells in vitro and measured BMP/Wnt activity using luciferase reporters. MTT assays were performed to s

    Deubiquitinase activity profiling identifies UCHL1 as a candidate oncoprotein that promotes TGFβ-induced breast cancer metastasis

    Get PDF
    Therapies directed to specific molecular targets are still unmet for triple-negative breast cancer (TNBC) patients. Deubiquitinases (DUBs) are emerging drug targets. The identification of a highly active DUBs in TNBC may lead to novel therapies.\n biochemical methods. A specific inhibitor was synthesised and its biochemical and biological functions were assessed in a range of assays. Finally, we used patient sera samples to investigate clinical correlations.\nTwo DUB activity profiling approaches identified UCHL1 as being highly active in TNBC cell lines and aggressive tumors. Functionally, UCHL1 promoted metastasis in zebrafish and murine breast cancer xenograft models. Mechanistically, UCHL1 facilitates TGFβ signaling-induced metastasis by protecting TGFβ type I receptor and SMAD2 from ubiquitination. We found that these responses are potently suppressed by the specific UCHL1 inhibitor, 6RK73. Furthermore, UCHL1 levels were significantly increased in TNBC patient sera, and highly enriched in sera exosomes as well as TNBC cell conditioned media. UCHL1 enriched exosomes stimulated breast cancer migration and extravasation, suggesting that UCHL1 may act in a paracrine manner to promote tumor progression.\nOur DUB activity profiling identified UCHL1 as a candidate oncoprotein that promotes TGFβ-induced breast cancer metastasis and may provide a potential target for TNBC treatment.Toxicolog
    corecore