15 research outputs found

    Risk factors and prognosis of young stroke. The FUTURE study: A prospective cohort study. Study rationale and protocol

    Get PDF
    Contains fulltext : 98322.pdf (postprint version ) (Open Access)BACKGROUND: Young stroke can have devastating consequences with respect to quality of life, the ability to work, plan or run a family, and participate in social life. Better insight into risk factors and the long-term prognosis is extremely important, especially in young stroke patients with a life expectancy of decades. To date, detailed information on risk factors and the long-term prognosis in young stroke patients, and more specific risk of mortality or recurrent vascular events, remains scarce. METHODS/DESIGN: The FUTURE study is a prospective cohort study on risk factors and prognosis of young ischemic and hemorrhagic stroke among 1006 patients, aged 18-50 years, included in our study database between 1-1-1980 and 1-11-2010. Follow-up visits at our research centre take place from the end of 2009 until the end of 2011. Control subjects will be recruited among the patients' spouses, relatives or social environment. Information on mortality and incident vascular events will be retrieved via structured questionnaires. In addition, participants are invited to the research centre to undergo an extensive sub study including MRI. DISCUSSION: The FUTURE study has the potential to make an important contribution to increase the knowledge on risk factors and long-term prognosis in young stroke patients. Our study differs from previous studies by having a maximal follow-up of more than 30 years, including not only TIA and ischemic stroke but also hemorrhagic stroke, the addition of healthy controls and prospectively collect data during an extensive follow-up visit. Completion of the FUTURE study may provide better information for treating physicians and patients with respect to the prognosis of young stroke.8 p

    Penumbral imaging and functional outcome in patients with anterior circulation ischaemic stroke treated with endovascular thrombectomy versus medical therapy: a meta-analysis of individual patient-level data

    Get PDF
    Background: CT perfusion (CTP) and diffusion or perfusion MRI might assist patient selection for endovascular thrombectomy. We aimed to establish whether imaging assessments of irreversibly injured ischaemic core and potentially salvageable penumbra volumes were associated with functional outcome and whether they interacted with the treatment effect of endovascular thrombectomy on functional outcome. Methods: In this systematic review and meta-analysis, the HERMES collaboration pooled patient-level data from all randomised controlled trials that compared endovascular thrombectomy (predominantly using stent retrievers) with standard medical therapy in patients with anterior circulation ischaemic stroke, published in PubMed from Jan 1, 2010, to May 31, 2017. The primary endpoint was functional outcome, assessed by the modified Rankin Scale (mRS) at 90 days after stroke. Ischaemic core was estimated, before treatment with either endovascular thrombectomy or standard medical therapy, by CTP as relative cerebral blood flow less than 30% of normal brain blood flow or by MRI as an apparent diffusion coefficient less than 620 μm2/s. Critically hypoperfused tissue was estimated as the volume of tissue with a CTP time to maximum longer than 6 s. Mismatch volume (ie, the estimated penumbral volume) was calculated as critically hypoperfused tissue volume minus ischaemic core volume. The association of ischaemic core and penumbral volumes with 90-day mRS score was analysed with multivariable logistic regression (functional independence, defined as mRS score 0–2) and ordinal logistic regression (functional improvement by at least one mRS category) in all patients and in a subset of those with more than 50% endovascular reperfusion, adjusted for baseline prognostic variables. The meta-analysis was prospectively designed by the HERMES executive committee, but not registered. Findings: We identified seven studies with 1764 patients, all of which were included in the meta-analysis. CTP was available and assessable for 591 (34%) patients and diffusion MRI for 309 (18%) patients. Functional independence was worse in patients who had CTP versus those who had diffusion MRI, after adjustment for ischaemic core volume (odds ratio [OR] 0·47 [95% CI 0·30–0·72], p=0·0007), so the imaging modalities were not pooled. Increasing ischaemic core volume was associated with reduced likelihood of functional independence (CTP OR 0·77 [0·69–0·86] per 10 mL, pinteraction=0·29; diffusion MRI OR 0·87 [0·81–0·94] per 10 mL, pinteraction=0·94). Mismatch volume, examined only in the CTP group because of the small numbers of patients who had perfusion MRI, was not associated with either functional independence or functional improvement. In patients with CTP with more than 50% endovascular reperfusion (n=186), age, ischaemic core volume, and imaging-to-reperfusion time were independently associated with functional improvement. Risk of bias between studies was generally low. Interpretation: Estimated ischaemic core volume was independently associated with functional independence and functional improvement but did not modify the treatment benefit of endovascular thrombectomy over standard medical therapy for improved functional outcome. Combining ischaemic core volume with age and expected imaging-to-reperfusion time will improve assessment of prognosis and might inform endovascular thrombectomy treatment decisions. Funding: Medtronic

    Causes and consequences of cerebral small vessel disease. The RUN DMC study: a prospective cohort study. Study rationale and protocol

    Get PDF
    Contains fulltext : 96704.pdf (publisher's version ) (Open Access)BACKGROUND: Cerebral small vessel disease (SVD) is a frequent finding on CT and MRI scans of elderly people and is related to vascular risk factors and cognitive and motor impairment, ultimately leading to dementia or parkinsonism in some. In general, the relations are weak, and not all subjects with SVD become demented or get parkinsonism. This might be explained by the diversity of underlying pathology of both white matter lesions (WML) and the normal appearing white matter (NAWM). Both cannot be properly appreciated with conventional MRI. Diffusion tensor imaging (DTI) provides alternative information on microstructural white matter integrity. The association between SVD, its microstructural integrity, and incident dementia and parkinsonism has never been investigated. METHODS/DESIGN: The RUN DMC study is a prospective cohort study on the risk factors and cognitive and motor consequences of brain changes among 503 non-demented elderly, aged between 50-85 years, with cerebral SVD. First follow up is being prepared for July 2011. Participants alive will be included and invited to the research centre to undergo a structured questionnaire on demographics and vascular risk factors, and a cognitive, and motor, assessment, followed by a MRI protocol including conventional MRI, DTI and resting state fMRI. DISCUSSION: The follow up of the RUN DMC study has the potential to further unravel the causes and possibly better predict the consequences of changes in white matter integrity in elderly with SVD by using relatively new imaging techniques. When proven, these changes might function as a surrogate endpoint for cognitive and motor function in future therapeutic trials. Our data could furthermore provide a better understanding of the pathophysiology of cognitive and motor disturbances in elderly with SVD. The execution and completion of the follow up of our study might ultimately unravel the role of SVD on the microstructural integrity of the white matter in the transition from "normal" aging to cognitive and motor decline and impairment and eventually to incident dementia and parkinsonism

    Stroke genetics informs drug discovery and risk prediction across ancestries

    Get PDF
    Previous genome-wide association studies (GWASs) of stroke — the second leading cause of death worldwide — were conducted predominantly in populations of European ancestry1,2. Here, in cross-ancestry GWAS meta-analyses of 110,182 patients who have had a stroke (five ancestries, 33% non-European) and 1,503,898 control individuals, we identify association signals for stroke and its subtypes at 89 (61 new) independent loci: 60 in primary inverse-variance-weighted analyses and 29 in secondary meta-regression and multitrait analyses. On the basis of internal cross-ancestry validation and an independent follow-up in 89,084 additional cases of stroke (30% non-European) and 1,013,843 control individuals, 87% of the primary stroke risk loci and 60% of the secondary stroke risk loci were replicated (P < 0.05). Effect sizes were highly correlated across ancestries. Cross-ancestry fine-mapping, in silico mutagenesis analysis3, and transcriptome-wide and proteome-wide association analyses revealed putative causal genes (such as SH3PXD2A and FURIN) and variants (such as at GRK5 and NOS3). Using a three-pronged approach4, we provide genetic evidence for putative drug effects, highlighting F11, KLKB1, PROC, GP1BA, LAMC2 and VCAM1 as possible targets, with drugs already under investigation for stroke for F11 and PROC. A polygenic score integrating cross-ancestry and ancestry-specific stroke GWASs with vascular-risk factor GWASs (integrative polygenic scores) strongly predicted ischaemic stroke in populations of European, East Asian and African ancestry5. Stroke genetic risk scores were predictive of ischaemic stroke independent of clinical risk factors in 52,600 clinical-trial participants with cardiometabolic disease. Our results provide insights to inform biology, reveal potential drug targets and derive genetic risk prediction tools across ancestries

    Endovascular treatment versus no endovascular treatment after 6–24 h in patients with ischaemic stroke and collateral flow on CT angiography (MR CLEAN-LATE) in the Netherlands:a multicentre, open-label, blinded-endpoint, randomised, controlled, phase 3 trial

    Get PDF
    Background: Endovascular treatment for anterior circulation ischaemic stroke is effective and safe within a 6 h window. MR CLEAN-LATE aimed to assess efficacy and safety of endovascular treatment for patients treated in the late window (6–24 h from symptom onset or last seen well) selected on the basis of the presence of collateral flow on CT angiography (CTA). Methods: MR CLEAN-LATE was a multicentre, open-label, blinded-endpoint, randomised, controlled, phase 3 trial done in 18 stroke intervention centres in the Netherlands. Patients aged 18 years or older with ischaemic stroke, presenting in the late window with an anterior circulation large-vessel occlusion and collateral flow on CTA, and a neurological deficit score of at least 2 on the National Institutes of Health Stroke Scale were included. Patients who were eligible for late-window endovascular treatment were treated according to national guidelines (based on clinical and perfusion imaging criteria derived from the DAWN and DEFUSE-3 trials) and excluded from MR CLEAN-LATE enrolment. Patients were randomly assigned (1:1) to receive endovascular treatment or no endovascular treatment (control), in addition to best medical treatment. Randomisation was web based, with block sizes ranging from eight to 20, and stratified by centre. The primary outcome was the modified Rankin Scale (mRS) score at 90 days after randomisation. Safety outcomes included all-cause mortality at 90 days after randomisation and symptomatic intracranial haemorrhage. All randomly assigned patients who provided deferred consent or died before consent could be obtained comprised the modified intention-to-treat population, in which the primary and safety outcomes were assessed. Analyses were adjusted for predefined confounders. Treatment effect was estimated with ordinal logistic regression and reported as an adjusted common odds ratio (OR) with a 95% CI. This trial was registered with the ISRCTN, ISRCTN19922220. Findings: Between Feb 2, 2018, and Jan 27, 2022, 535 patients were randomly assigned, and 502 (94%) patients provided deferred consent or died before consent was obtained (255 in the endovascular treatment group and 247 in the control group; 261 [52%] females). The median mRS score at 90 days was lower in the endovascular treatment group than in the control group (3 [IQR 2–5] vs 4 [2–6]), and we observed a shift towards better outcomes on the mRS for the endovascular treatment group (adjusted common OR 1·67 [95% CI 1·20–2·32]). All-cause mortality did not differ significantly between groups (62 [24%] of 255 patients vs 74 [30%] of 247 patients; adjusted OR 0·72 [95% CI 0·44–1·18]). Symptomatic intracranial haemorrhage occurred more often in the endovascular treatment group than in the control group (17 [7%] vs four [2%]; adjusted OR 4·59 [95% CI 1·49–14·10]). Interpretation: In this study, endovascular treatment was efficacious and safe for patients with ischaemic stroke caused by an anterior circulation large-vessel occlusion who presented 6–24 h from onset or last seen well, and who were selected on the basis of the presence of collateral flow on CTA. Selection of patients for endovascular treatment in the late window could be primarily based on the presence of collateral flow. Funding: Collaboration for New Treatments of Acute Stroke consortium, Dutch Heart Foundation, Stryker, Medtronic, Cerenovus, Top Sector Life Sciences &amp; Health, and the Netherlands Brain Foundation.</p

    The Prognostic Value of CT Angiography and CT Perfusion in Acute Ischemic Stroke

    No full text
    Background: CT angiography (CTA) and CT perfusion (CTP) are important diagnostic tools in acute ischemic stroke. We investigated the prognostic value of CTA and CTP for clinical outcome and determined whether they have additional prognostic value over patient characteristics and non-contrast CT (NCCT). Methods: We included 1,374 patients with suspected acute ischemic stroke in the prospective multicenter Dutch acute stroke study. Sixty percent of the cohort was used for deriving the predictors and the remaining 40% for validating them. We calculated the predictive values of CTA and CTP predictors for poor clinical outcome (modified Rankin Scale score 3-6). Associations between CTA and CTP predictors and poor clinical outcome were assessed with odds ratios (OR). Multivariable logistic regression models were developed based on patient characteristics and NCCT predictors, and subsequently CTA and CTP predictors were added. The increase in area under the curve (AUC) value was determined to assess the additional prognostic value of CTA and CTP. Model validation was performed by assessing discrimination and calibration. Results: Poor outcome occurred in 501 patients (36.5%). Each of the evaluated CTA measures strongly predicted outcome in univariable analyses: the positive predictive value (PPV) was 59% for Alberta Stroke Program Early CT Score (ASPECTS) ≤7 on CTA source images (OR 3.3; 95% CI 2.3-4.8), 63% for presence of a proximal intracranial occlusion (OR 5.1; 95% CI 3.7-7.1), 66% for poor leptomeningeal collaterals (OR 4.3; 95% CI 2.8-6.6), and 58% for a >70% carotid or vertebrobasilar stenosis/occlusion (OR 3.2; 95% CI 2.2-4.6). The same applied to the CTP measures, as the PPVs were 65% for ASPECTS ≤7 on cerebral blood volume maps (OR 5.1; 95% CI 3.7-7.2) and 53% for ASPECTS ≤7 on mean transit time maps (OR 3.9; 95% CI 2.9-5.3). The prognostic model based on patient characteristics and NCCT measures was highly predictive for poor clinical outcome (AUC 0.84; 95% CI 0.81-0.86). Adding CTA and CTP predictors to this model did not improve the predictive value (AUC 0.85; 95% CI 0.83-0.88). In the validation cohort, the AUC values were 0.78 (95% CI 0.73-0.82) and 0.79 (95% CI 0.75-0.83), respectively. Calibration of the models was satisfactory. Conclusions: In patients with suspected acute ischemic stroke, admission CTA and CTP parameters are strong predictors of poor outcome and can be used to predict long-term clinical outcome. In multivariable prediction models, however, their additional prognostic value over patient characteristics and NCCT is limited in an unselected stroke population
    corecore