162 research outputs found

    A manually curated network of the PML nuclear body interactome reveals an important role for PML-NBs in SUMOylation dynamics

    Get PDF
    Promyelocytic Leukaemia Protein nuclear bodies (PML-NBs) are dynamic nuclear protein aggregates. To gain insight in PML-NB function, reductionist and high throughput techniques have been employed to identify PML-NB proteins. Here we present a manually curated network of the PML-NB interactome based on extensive literature review including database information. By compiling 'the PML-ome', we highlighted the presence of interactors in the Small Ubiquitin Like Modifier (SUMO) conjugation pathway. Additionally, we show an enrichment of SUMOylatable proteins in the PML-NBs through an in-house prediction algorithm. Therefore, based on the PML network, we hypothesize that PML-NBs may function as a nuclear SUMOylation hotspot

    PROTEOFORMER: deep proteome coverage through ribosome profiling and MS integration

    Get PDF
    An increasing amount of studies integrate mRNA sequencing data into MS-based proteomics to complement the translation product search space. However, several factors, including extensive regulation of mRNA translation and the need for three- or six-frame-translation, impede the use of mRNA-seq data for the construction of a protein sequence search database. With that in mind, we developed the PROTEOFORMER tool that automatically processes data of the recently developed ribosome profiling method (sequencing of ribosome-protected mRNA fragments), resulting in genome-wide visualization of ribosome occupancy. Our tool also includes a translation initiation site calling algorithm allowing the delineation of the open reading frames (ORFs) of all translation products. A complete protein synthesis-based sequence database can thus be compiled for mass spectrometry-based identification. This approach increases the overall protein identification rates with 3% and 11% (improved and new identifications) for human and mouse, respectively, and enables proteome-wide detection of 5'-extended proteoforms, upstream ORF translation and near-cognate translation start sites. The PROTEOFORMER tool is available as a stand-alone pipeline and has been implemented in the galaxy framework for ease of use

    Co-occurrence of free-living protozoa and foodborne pathogens on dishcloths: implications for food safety

    Get PDF
    &lt;p&gt;In the present study, the occurrence of free-living protozoa (FLP) and foodborne bacterial pathogens on dishcloths was investigated. Dishcloths form a potentially important source of cross-contamination with FLP and foodborne pathogens in food-related environments. First various protocols for recovering and quantifying FLP from dishcloths were assessed. The stomacher technique is recommended to recover flagellates and amoebae from dishcloths. Ciliates, however, were more efficiently recovered using centrifugation. For enumeration of free-living protozoa on dishcloths, the Most Probable Number method is a convenient method. Enrichment was used to assess FLP diversity on dishcloths (n=38). FLP were found on 89% of the examined dishcloths; 100% of these tested positive for amoebae, 71% for flagellates and 47% for ciliates. Diversity was dominated by amoebae: vahlkampfiids, vannellids, Acanthamoeba spp., Hyperamoeba sp. and Vermamoeba vermiformis were most common. The ciliate genus Colpoda was especially abundant on dishcloths while heterotrophic nanoflagellates mainly belonged to the genus Bodo, the glissomonads and cercomonads. The total number of FLP in used dishcloths ranged from 10 to 10(4) MPN/cm(2). Flagellates were the most abundant group, and ciliates the least abundant. Detergent use was identified as a prime determinant of FLP concentrations on used dishcloths. Bacterial load on dishcloths was high, with a mean total of aerobic bacteria of 7.47 log 10 cfu/cm(2). Escherichia coli was detected in 68% (26/38) of the used dishcloths, with concentrations up to 4 log 10 cfu/cm(2). Foodborne pathogens including Staphylococcus aureus (19/38), Arcobacter butzleri (5/38) and Salmonella enterica subsp. enterica ser. Halle (1/38) were also present. This study showed for the first time that FLP, including some opportunistic pathogens, are a common and diverse group on dishcloths. Moreover, important foodborne pathogens are also regularly recovered. This simultaneous occurrence makes dishcloths a potential risk factor for cross-contamination and a microbial niche for bacteria-FLP interactions.&lt;/p&gt;</p

    Identification of quantitative trait loci controlling root and shoot traits associated with drought tolerance in a lentil (Lens culinaris Medik.) recombinant inbred line population

    Get PDF
    Drought is one of the major abiotic stresses limiting lentil productivity in rainfed production systems. Specific rooting patterns can be associated with drought avoidance mechanisms that can be used in lentil breeding programs. In all, 252 co-dominant and dominant markers were used for Quantitative Trait Loci (QTL) analysis on 132 lentil recombinant inbred lines based on greenhouse experiments for root and shoot traits during two seasons under progressive drought-stressed conditions. Eighteen QTLs controlling a total of 14 root and shoot traits were identified. A QTL-hotspot genomic region related to a number of root and shoot characteristics associated with drought tolerance such as dry root biomass, root surface area, lateral root number, dry shoot biomass and shoot length was identified. Interestingly, a QTL (QRSratioIX-2.30) related to root-shoot ratio, an important trait for drought avoidance, explaining the highest phenotypic variance of 27.6 and 28.9% for the two consecutive seasons, respectively, was detected. This QTL was closed to the co-dominant SNP marker TP6337 and also flanked by the two SNP TP518 and TP1280. An important QTL (QLRNIII-98.64) related to lateral root number was found close to TP3371 and flanked by TP5093 and TP6072 SNP markers. Also, a QTL (QSRLIV-61.63) associated with specific root length was identified close to TP1873 and flanked by F7XEM6b SRAP marker and TP1035 SNP marker. These two QTLs were detected in both seasons. Our results could be used for marker-assisted selection in lentil breeding programs targeting root and shoot characteristics conferring drought avoidance as an efficient alternative to slow and labor-intensive conventional breeding methods

    Glucocorticosteroids trigger reactivation of human cytomegalovirus from latently infected myeloid cells and increase the risk for HCMV infection in D+R+ liver transplant patients.

    Get PDF
    Graft rejection in transplant patients is managed clinically by suppressing T-cell function with immunosuppressive drugs such as prednisolone and methylprednisolone. In such immunocompromised hosts, human cytomegalovirus (HCMV) is an important opportunistic pathogen and can cause severe morbidity and mortality. Currently, the effect of glucocorticosteroids (GCSs) on the HCMV life cycle remains unclear. Previous reports showed enhanced lytic replication of HCMV in vitro in the presence of GCSs. In the present study, we explored the implications of steroid exposure on latency and reactivation. We observed a direct effect of several GCSs used in the clinic on the activation of a quiescent viral major immediate-early promoter in stably transfected THP-1 monocytic cells. This activation was prevented by the glucocorticoid receptor (GR) antagonist Ru486 and by shRNA-mediated knockdown of the GR. Consistent with this observation, prednisolone treatment of latently infected primary monocytes resulted in HCMV reactivation. Analysis of the phenotype of these cells showed that treatment with GCSs was correlated with differentiation to an anti-inflammatory macrophage-like cell type. On the basis that these observations may be pertinent to HCMV reactivation in post-transplant settings, we retrospectively evaluated the incidence, viral kinetics and viral load of HCMV in liver transplant patients in the presence or absence of GCS treatment. We observed that combination therapy of baseline prednisolone and augmented methylprednisolone, upon organ rejection, significantly increased the incidence of HCMV infection in the intermediate risk group where donor and recipient are both HCMV seropositive (D+R+) to levels comparable with the high risk D+R- group

    Human cytomegalovirus miR-UL112-1 promotes the down-regulation of viral immediate early-gene expression during latency to prevent T-cell recognition of latently infected cells.

    Get PDF
    Human cytomegalovirus, a member of the herpesvirus family, can cause significant morbidity and mortality in immune compromised patients resulting from either primary lytic infection or reactivation from latency. Latent infection is associated with a restricted viral transcription programme compared to lytic infection which consists of defined protein coding RNAs but also includes a number of virally encoded microRNAs (miRNAs). One of these, miR-UL112-1, is known to target the major lytic IE72 transcript but, to date, a functional role for miR-UL112-1 during latent infection has not been shown. To address this, we have analysed latent infection in myeloid cells using a virus in which the target site for miR-UL112-1 in the 3' UTR of IE72 was removed such that any IE72 RNA present during latent infection would no longer be subject to regulation by miR-UL112-1 through the RNAi pathway. Our data show that removal of the miR-UL112-1 target site in IE72 results in increased levels of IE72 RNA in experimentally latent primary monocytes. Furthermore, this resulted in induction of immediate early (IE) gene expression that is detectable by IE-specific cytotoxic T-cells (CTLs); no such CTL recognition of monocytes latently infected with wild-type virus was observed. We also recapitulated these findings in the more tractable THP-1 cell line model of latency. These observations argue that an important role for miR-UL112-1 during latency is to ensure tight control of lytic viral immediate early (IE) gene expression thereby preventing recognition of latently infected cells by the host's potent pre-existing anti-viral CTL response.Medical Research Council (Grant ID: G:0701279); National Institute for Health Research Biomedical Research CentreThis is the author accepted manuscript. The final version is available from the Microbiology Society via http://dx.doi.org/10.1099/jgv.0.00054

    Molecular variance and population structure of lentil (Lens culinaris Medik.) landraces from Mediterranean countries as revealed by simple sequence repeat DNA markers : implications for conservation and use

    Get PDF
    The Mediterranean region has a rich history of domestication and cultivation of lentil (Lens culinaris Medik.). Landraces have been grown and repeatedly selected by local farmers under different agro-environments. Characterization of molecular variation and genetic differentiation helps to ensure enhanced valorization, conservation and use of these genetic resources. Nineteen Simple Sequence Repeat DNA markers were used for molecular variance analysis (AMOVA) and population structure assessment underlying 74 lentil landraces from four Mediterranean countries: Morocco, Italy, Greece and Turkey. Based on AMOVA, presence of population structure and genetic differentiation at different levels were evidenced. Genetic diversity among Turkish landraces was higher than that of other countries. These landraces were more homogeneous as shown by low genetic differentiation among individuals within each landrace. Whereas Moroccan landraces followed by Italian and Greek provenances showed higher diversity and differentiation among individuals within landraces. The wide genetic variability of these landraces could help to better adaptation to biotic and abiotic stresses. Moreover, they could provide useful alleles related to adaptive traits for breeding purposes. Based on structure analysis, we obtained indications of possible presence of two major gene pools: a northern gene pool composed of Turkish, Italian and Greek landraces, and a southern gene pool composed of Moroccan landraces. Our results could be of interest when designing future diversity studies, collection missions, conservation and core collection construction strategies on Mediterranean lentil landraces

    Introduction to advances in construction and demolition waste

    Get PDF
    Resource efficiency, as well as the importance and limitations of the Circular economy concept, are highlighted. The case of construction and demolition waste-CDW recycling is introduced. The 70% recycling rate for EU in 2020 is analyzed and a literature review on the Waste Framework Directive is carried out. Brief comments on CDW containing hazardous substances are made. A book outline is included

    Rare mutations in SQSTM1 modify susceptibility to frontotemporal lobar degeneration

    Get PDF
    Mutations in the gene coding for Sequestosome 1 (SQSTM1) have been genetically associated with amyotrophic lateral sclerosis (ALS) and Paget disease of bone. In the present study, we analyzed the SQSTM1 coding sequence for mutations in an extended cohort of 1,808 patients with frontotemporal lobar degeneration (FTLD), ascertained within the European Early-Onset Dementia consortium. As control dataset, we sequenced 1,625 European control individuals and analyzed whole-exome sequence data of 2,274 German individuals (total n = 3,899). Association of rare SQSTM1 mutations was calculated in a meta-analysis of 4,332 FTLD and 10,240 control alleles. We identified 25 coding variants in FTLD patients of which 10 have not been described. Fifteen mutations were absent in the control individuals (carrier frequency < 0.00026) whilst the others were rare in both patients and control individuals. When pooling all variants with a minor allele frequency < 0.01, an overall frequency of 3.2 % was calculated in patients. Rare variant association analysis between patients and controls showed no difference over the whole protein, but suggested that rare mutations clustering in the UBA domain of SQSTM1 may influence disease susceptibility by doubling the risk for FTLD (RR = 2.18 [95 % CI 1.24-3.85]; corrected p value = 0.042). Detailed histopathology demonstrated that mutations in SQSTM1 associate with widespread neuronal and glial phospho-TDP-43 pathology. With this study, we provide further evidence for a putative role of rare mutations in SQSTM1 in the genetic etiology of FTLD and showed that, comparable to other FTLD/ALS genes, SQSTM1 mutations are associated with TDP-43 pathology

    Identification of Z-Tyr-Ala-CHN 2, a Cathepsin L Inhibitor with Broad-Spectrum Cell-Specific Activity against Coronaviruses, including SARS-CoV-2.

    Get PDF
    The ongoing COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is partly under control by vaccination. However, highly potent and safe antiviral drugs for SARS-CoV-2 are still needed to avoid development of severe COVID-19. We report the discovery of a small molecule, Z-Tyr-Ala-CHN 2, which was identified in a cell-based antiviral screen. The molecule exerts sub-micromolar antiviral activity against SARS-CoV-2, SARS-CoV-1, and human coronavirus 229E. Time-of-addition studies reveal that Z-Tyr-Ala-CHN 2 acts at the early phase of the infection cycle, which is in line with the observation that the molecule inhibits cathepsin L. This results in antiviral activity against SARS-CoV-2 in VeroE6, A549-hACE2, and HeLa-hACE2 cells, but not in Caco-2 cells or primary human nasal epithelial cells since the latter two cell types also permit entry via transmembrane protease serine subtype 2 (TMPRSS2). Given their cell-specific activity, cathepsin L inhibitors still need to prove their value in the clinic; nevertheless, the activity profile of Z-Tyr-Ala-CHN 2 makes it an interesting tool compound for studying the biology of coronavirus entry and replication
    • …
    corecore