19 research outputs found
Assessing the statistical validity of proteomics based biomarkers
A strategy is presented for the statistical validation of discrimination models in proteomics studies. Several existing tools are combined to form a solid statistical basis for biomarker discovery that should precede a biochemical validation of any biomarker. These tools consist of permutation tests, single and double cross-validation. The cross-validation steps can simply be combined with a new variable selection method, called rank products. The strategy is especially suited for the low-samples-to-variables-ratio (undersampling) case, as is often encountered in proteomics and metabolomics studies. As a classification method, principal component discriminant analysis is used; however, the methodology can be used with any classifier. A dataset containing serum samples from Gaucher patients and healthy controls serves as a test case. Double cross-validation shows that the sensitivity of the model is 89% and the specificity 90%. Potential putative biomarkers are identified using the novel variable selection method. Results from permutation tests support the choice of double cross-validation as the tool for determining error rates when the modelling procedure involves a tuneable parameter. This shows that even cross-validation does not guarantee unbiased results. The validation of discrimination models with a combination of permutation tests and double cross-validation helps to avoid erroneous results which may result from the undersamplin
Increased plasma macrophage inflammatory protein (MIP)-1 alpha and MIP-1 beta levels in type 1 Gaucher disease
Pancytopenia, hepatosplenomegaly and skeletal complications are hallmarks of Gaucher disease. Monitoring of the outcome of therapy on skeletal status of Gaucher patients is problematic since currently available imaging techniques are expensive and not widely accessible. The availability of a blood test that relates to skeletal manifestations would be very valuable. We here report that macrophage inflammatory protein (MIP)-1 alpha and MIP-1 beta, both implicated in skeletal complications in multiple myeloma (MM), are significantly elevated in plasma of Gaucher patients. Plasma MIP-1 alpha of patients (median 78 pg/ml, range 21-550 pg/ml, n = 48) is elevated (normal median 9 pg/ml, range 0-208 pg/ml, n = 39). Plasma MIP-1 beta of patients (median 201 pg/ml, range 59-647 pg/ml, n = 49) is even more pronouncedly increased (non-nal median 17 pg/ ml, range 1-41 pg/ml, n = 39; one outlier: 122 pg/ml). The increase in plasma MIP-1 beta levels of Gaucher patients is associated with skeletal disease. The plasma levels of both chemokines decrease upon effective therapy. Lack of reduction of plasma MIP-1 beta below 85 pg/ml during 5 years of therapy was observed in patients with ongoing skeletal disease. In conclusion, MIP-1 alpha and MIP-1 beta are elevated in plasma of Gaucher patients and remaining high levels of MIP-1 beta during therapy seem associated with ongoing skeletal disease. (c) 2007 Elsevier B.V. All rights reserve
Proteomic Profiling of Plasma and Serum in Elderly Patients With Delirium
The aim of this study was to compare plasma and serum protein profiles in elderly acute hip fracture patients with and without delirium. The spectra from surface-enhanced laser desorption ionization (SELDI) using time-of-flight (TOF) mass spectrometry of 16 patients without and 16 patients with delirium (two groups of eight and eight) scored using the Confusion Assessment Method were compared. The most discriminating peak of 15.9 kDa in plasma in a testing group of eight patients with delirium to eight patients without delirium was confirmed in an independent validation group. Taking both groups together, three discriminating peaks of 7.97, 15.9, and 16.0 kDa were found in delirious patients. These peaks presumably correspond to hemoglobin-beta, its doubly charged ion, and its glycosylated form. (The Journal of Neuropsychiatry and Clinical Neurosciences 2009; 21: 284-291
Marked elevation of the chemokine CCL18/PARC in Gaucher disease: a novel surrogate marker for assessing therapeutic intervention
Gaucher disease is characterized by storage of glucosylceramide in lysosomes of tissue macrophages as the result of an autosomal recessively inherited deficiency in glucocerebrosidase. Progressive accumulation of these glycolipid-laden Gaucher cells causes a variety of debilitating symptoms. The disease can be effectively treated by costly intravenous infusions with recombinant glucocerebrosidase. Chitotriosidase is massively secreted by Gaucher cells and its plasma levels are used to monitor efficacy of enzyme therapy. Broad-scale application is hampered by the common genetic defect in this surrogate marker. We report that in plasma of symptomatic patients with Gaucher disease the chemokine CCL18 is on average 29-fold elevated, without overlap between patient and control values (median control plasma level is 33 ng/mL, range, 10-72 ng/mL; median Gaucher plasma level is 948 ng/mL, range, 237-2285 ng/mL). Plasma CCL18 concentrations decrease during therapy, comparably to chitotriosidase levels. Immunohistochemistry demonstrates that Gaucher cells are the prominent source of CCL18. Plasma CCL18 levels can serve as alternative surrogate marker for storage cells in patients with Gaucher disease and monitoring of plasma CCL18 levels proves to be useful in determination of therapeutic efficacy, especially in patients who are deficient in chitotriosidase activity. The potential physiologic consequences of chronically elevated CCL18 in patients with Gaucher disease are discusse
A single mutation in Taiwanese H6N1 influenza hemagglutinin switches binding to human-type receptors
In June 2013, the first case of human infection with an avian H6N1 virus was reported in a Taiwanese woman. Although this was a single non-fatal case, the virus continues to circulate in Taiwanese poultry. As with any emerging avian virus that infects humans, there is concern that acquisition of human-type receptor specificity could enable transmission in the human population. Despite mutations in the receptor-binding pocket of the human H6N1 isolate, it has retained avian-type (NeuAc alpha 2-3Gal) receptor specificity. However, we show here that a single nucleotide substitution, resulting in a change from Gly to Asp at position 225 (G225D), completely switches specificity to human-type (NeuAc alpha 2-6Gal) receptors. Significantly, G225D H6 loses binding to chicken trachea epithelium and is now able to bind to human tracheal tissue. Structural analysis reveals that Asp225 directly interacts with the penultimate Gal of the human-type receptor, stabilizing human receptor bindin
Three mutations switch H7N9 influenza to human-type receptor specificity
The avian H7N9 influenza outbreak in 2013 resulted from an unprecedented incidence of influenza transmission to humans from infected poultry. The majority of human H7N9 isolates contained a hemagglutinin (HA) mutation (Q226L) that has previously been associated with a switch in receptor specificity from avian-type (NeuAcα2-3Gal) to human-type (NeuAcα2-6Gal), as documented for the avian progenitors of the 1957 (H2N2) and 1968 (H3N2) human influenza pandemic viruses. While this raised concern that the H7N9 virus was adapting to humans, the mutation was not sufficient to switch the receptor specificity of H7N9, and has not resulted in sustained transmission in humans. To determine if the H7 HA was capable of acquiring human-type receptor specificity, we conducted mutation analyses. Remarkably, three amino acid mutations conferred a switch in specificity for human-type receptors that resembled the specificity of the 2009 human H1 pandemic virus, and promoted binding to human trachea epithelial cell
Mapping the immunogenic landscape of near-native HIV-1 envelope trimers in non-human primates
The induction of broad and potent immunity by vaccines is the key focus of research efforts aimed at protecting against HIV-1 infection. Soluble native-like HIV-1 envelope glycoproteins have shown promise as vaccine candidates as they can induce potent autologous neutralizing responses in rabbits and non-human primates. In this study, monoclonal antibodies were isolated and characterized from rhesus macaques immunized with the BG505 SOSIP.664 trimer to better understand vaccine-induced antibody responses. Our studies reveal a diverse landscape of antibodies recognizing immunodominant strain-specific epitopes and non-neutralizing neo-epitopes. Additionally, we isolated a subset of mAbs against an epitope cluster at the gp120-gp41 interface that recognize the highly conserved fusion peptide and the glycan at position 88 and have characteristics akin to several human-derived broadly neutralizing antibodies
Two-component spike nanoparticle vaccine protects macaques from SARS-CoV-2 infection
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic is continuing to disrupt personal lives, global healthcare systems, and economies. Hence, there is an urgent need for a vaccine that prevents viral infection, transmission, and disease. Here, we present a two-component protein-based nanoparticle vaccine that displays multiple copies of the SARS-CoV-2 spike protein. Immunization studies show that this vaccine induces potent neutralizing antibody responses in mice, rabbits, and cynomolgus macaques. The vaccine-induced immunity protects macaques against a high-dose challenge, resulting in strongly reduced viral infection and replication in the upper and lower airways. These nanoparticles are a promising vaccine candidate to curtail the SARS-CoV-2 pandemic. Brouwer et al. present preclinical evidence in support of a COVID-19 vaccine candidate, designed as a self-assembling two-component protein nanoparticle displaying multiple copies of the SARS-CoV-2 spike protein, which induces strong neutralizing antibody responses and protects from high-dose SARS-CoV-2 challenge.</p
Two-component spike nanoparticle vaccine protects macaques from SARS-CoV-2 infection
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic is continuing to disrupt personal lives, global healthcare systems, and economies. Hence, there is an urgent need for a vaccine that prevents viral infection, transmission, and disease. Here, we present a two-component protein-based nanoparticle vaccine that displays multiple copies of the SARS-CoV-2 spike protein. Immunization studies show that this vaccine induces potent neutralizing antibody responses in mice, rabbits, and cynomolgus macaques. The vaccine-induced immunity protects macaques against a high-dose challenge, resulting in strongly reduced viral infection and replication in the upper and lower airways. These nanoparticles are a promising vaccine candidate to curtail the SARS-CoV-2 pandemic. Brouwer et al. present preclinical evidence in support of a COVID-19 vaccine candidate, designed as a self-assembling two-component protein nanoparticle displaying multiple copies of the SARS-CoV-2 spike protein, which induces strong neutralizing antibody responses and protects from high-dose SARS-CoV-2 challenge