20 research outputs found

    Two-component spike nanoparticle vaccine protects macaques from SARS-CoV-2 infection

    Get PDF
    Brouwer et al. present preclinical evidence in support of a COVID-19 vaccine candidate, designed as a self-assembling two-component protein nanoparticle displaying multiple copies of the SARS-CoV-2 spike protein, which induces strong neutralizing antibody responses and protects from high-dose SARS-CoV-2 challenge.The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic is continuing to disrupt personal lives, global healthcare systems, and economies. Hence, there is an urgent need for a vaccine that prevents viral infection, transmission, and disease. Here, we present a two-component protein-based nanoparticle vaccine that displays multiple copies of the SARS-CoV-2 spike protein. Immunization studies show that this vaccine induces potent neutralizing antibody responses in mice, rabbits, and cynomolgus macaques. The vaccine-induced immunity protects macaques against a high-dose challenge, resulting in strongly reduced viral infection and replication i

    Potential artefacts in proteome analysis of plasma of Gaucher patients due to protease abnormalities

    No full text
    The plasma proteome of type I Gaucher disease patients was investigated by 2D gel electrophoresis (2DGE). Using the classical procedure with 8 M urea treated plasma, several high molecular weight proteins were absent from Gaucher plasma specimens, while additional low molecular weight proteins were visible. The latter were identified as proteolytic degradation products. Adding small amounts of patient plasma to control plasma gave extensive protein breakdown. The presence of 2.2 M thiourea/7.7 M urea in the rehydration solution totally prevented breakdown. In the 'urea only' solution, protease(s) uniquely present in Gaucher plasma, appear to be still active towards other denatured plasma proteins at low pH. Therapy of patients results in gradual disappearance of proteolytic capacity from plasma specimens, indicating it to be related to the presence of Gaucher storage cells. The proteolytic activity could be partly removed from Gaucher plasma samples by Concanavalin A, suggesting that glycoproteins are involved. Reduction of proteolysis by Pepstatin A and Leupeptin implies that cathepsins. proteases known to be overproduced by Gaucher storage cells, are involved. In conclusion, 2DGE Gaucher plasma proteomes should be interpreted cautiously given the abnormal high levels of proteases associated with this disorder. (c) 2008 Elsevier B.V. All rights reserve

    Detection of mutant protein in complex biological samples: glucocerebrosidase mutations in Gaucher's disease

    No full text
    We report a sensitive method to detect point mutations in proteins from complex samples. The method is based on surface-enhanced laser desorption/ionization time-of-flight (SELDI-ToF) MS but can be extended to other MS platforms. The target protein in this study is the lysosomal enzyme glucocerebrosidase (GC), the key enzyme in Gaucher's disease. Deficiency of GC activity results in accumulation of glucosylceramide in macrophages. The relationship between GC genotypes and Gaucher's patient phenotypes is not strict. The possibility to measure protein levels of GC in clinical samples may provide deeper insight into the phenomenology of Gaucher's disease. For this purpose, GC was isolated in a single enrichment step through interaction with an immobilized monoclonal antibody, 8E4. After on-chip digestion of the antibody-antigen complex with trypsin, a total of 25 GC peptides were identified (sequence coverage approximately 60%), including several peptides containing mutated amino acid residues. The described methodology allows mutational analysis on the protein level, directly measured on complex biological samples without the necessity of elaborate purification procedure

    Variable domain N-linked glycans acquired during antigen-specific immune responses can contribute to immunoglobulin G antibody stability

    No full text
    Immunoglobulin G (IgG) can contain N-linked glycans in the variable domains, the so-called Fab glycans, in addition to the Fc glycans in the CH2 domains. These Fab glycans are acquired following introduction of N-glycosylation sites during somatic hypermutation and contribute to antibody diversification. We investigated whether Fab glycans may-in addition to affecting antigen binding-contribute to antibody stability. By analyzing thermal unfolding profiles of antibodies with or without Fab glycans, we demonstrate that introduction of Fab glycans can improve antibody stability. Strikingly, removal of Fab glycans naturally acquired during antigen-specific immune responses can deteriorate antibody stability, suggesting in vivo selection of stable, glycosylated antibodies. Collectively, our data show that variable domain N-linked glycans acquired during somatic hypermutation can contribute to IgG antibody stability. These findings indicate that introducing Fab glycans may represent a mechanism to improve therapeutic/diagnostic antibody stability

    Presentation_1.PDF

    No full text
    <p>Immunoglobulin G (IgG) can contain N-linked glycans in the variable domains, the so-called Fab glycans, in addition to the Fc glycans in the C<sub>H</sub>2 domains. These Fab glycans are acquired following introduction of N-glycosylation sites during somatic hypermutation and contribute to antibody diversification. We investigated whether Fab glycans may—in addition to affecting antigen binding—contribute to antibody stability. By analyzing thermal unfolding profiles of antibodies with or without Fab glycans, we demonstrate that introduction of Fab glycans can improve antibody stability. Strikingly, removal of Fab glycans naturally acquired during antigen-specific immune responses can deteriorate antibody stability, suggesting in vivo selection of stable, glycosylated antibodies. Collectively, our data show that variable domain N-linked glycans acquired during somatic hypermutation can contribute to IgG antibody stability. These findings indicate that introducing Fab glycans may represent a mechanism to improve therapeutic/diagnostic antibody stability.</p

    Elevated plasma glucosylsphingosine in Gaucher disease: relation to phenotype, storage cell markers, and therapeutic response

    No full text
    Gaucher disease, caused by a deficiency of the lysosomal enzyme glucocerebrosidase, leads to prominent glucosylceramide accumulation in lysosomes of tissue macrophages (Gaucher cells). Here we show glucosylsphingosine, the deacylated form of glucosylceramide, to be markedly increased in plasma of symptomatic nonneuronopathic (type 1) Gaucher patients (n = 64, median = 230.7 nM, range 15.6-1035.2 nM; normal (n = 28): median 1.3 nM, range 0.8-2.7 nM). The method developed for mass spectrometric quantification of plasma glucosylsphingosine is sensitive and robust. Plasma glucosylsphingosine levels correlate with established plasma markers of Gaucher cells, chitotriosidase (ρ = 0.66) and CCL18 (ρ = 0.40). Treatment of Gaucher disease patients by supplementing macrophages with mannose-receptor targeted recombinant glucocerebrosidase results in glucosylsphingosine reduction, similar to protein markers of Gaucher cells. Since macrophages prominently accumulate the lysoglycosphingolipid on glucocerebrosidase inactivation, Gaucher cells seem a major source of the elevated plasma glucosylsphingosine. Our findings show that plasma glucosylsphingosine can qualify as a biomarker for type 1 Gaucher disease, but that further investigations are warranted regarding its relationship with clinical manifestations of Gaucher diseas

    Gaucher disease: a model disorder for biomarker discovery

    No full text
    Gaucher disease is an inherited lysosomal storage disorder, characterized by massive accumulation of glucosylceramide-laden macrophages in the spleen, liver and bone marrow as a consequence of deficient activity of glucocerebrosidase. Gaucher disease has been the playground to develop new therapeutic interventions such as enzyme-replacement therapy and substrate-reduction therapy. The availability of these costly therapies has stimulated research regarding suitable biomarkers to monitor onset and progression of disease, as well as the efficacy of therapeutic intervention. Given the important role of storage cells in the pathology, various attempts have been made to identify proteins in plasma or serum reflecting the body burden of these pathological cells. in this review, the existing data regarding biomarkers for Gaucher disease, as well as the current application of biomarkers in clinical management of Gaucher patients are discussed. Moreover, the use of several modern proteomic technologies for the identification of Gaucher biomarkers is reviewe
    corecore