1,887 research outputs found

    A xylem sap retrieval pathway in rice leaf blades: evidence of a role for endocytosis?

    Get PDF
    The structure and transport properties of pit membranes at the interface between the metaxylem and xylem parenchyma cells and the possible role of these pit membranes in solute transfer to the phloem were investigated. Electron microscopy revealed a fibrillar, almost tubular matrix within the pit membrane structure between the xylem vessels and xylem parenchyma of leaf blade bundles in rice (Oryza sativa). These pits are involved primarily with regulating water flux to the surrounding xylem parenchyma cells. Vascular parenchyma cells contain large mitochondrial populations, numerous dictyosomes, endomembrane complexes, and vesicles in close proximity to the pit membrane. Taken collectively, this suggests that endocytosis may occur at this interface. A weak solution of 5,6-carboxyfluorescein diacetate (5,6-CFDA) was applied to cut ends of leaves and, after a minimum of 30 min, the distribution of the fluorescent cleavage product, 5,6-carboxyfluorescein (5,6-CF), was observed using confocal microscopy. Cleavage of 5,6-CFDA occurred within the xylem parenchyma cells, and the non-polar 5,6-CF was then symplasmically transported to other parenchyma elements and ultimately, via numerous pore plasmodesmata, to adjacent thick-walled sieve tubes. Application of Lucifer Yellow, and, separately, Texas Red-labelled dextran (10 kDa) to the transpiration stream, confirmed that these membrane-impermeant probes could only have been offloaded from the xylem via the xylem vessel–xylem parenchyma pit membranes, suggesting endocytotic transmembrane transfer of these membrane-impermeant fluorophores. Accumulation within the thick-walled sieve tubes, but not in thin-walled sieve tubes, confirms the presence of a symplasmic phloem loading pathway, via pore plasmodesmata between xylem parenchyma and thick-walled sieve tubes, but not thin-walled sieve tubes

    Energetics of the Einstein-Rosen spacetime

    Full text link
    A study covering some aspects of the Einstein--Rosen metric is presented. The electric and magnetic parts of the Weyl tensor are calculated. It is shown that there are no purely magnetic E--R spacetimes, and also that a purely electric E--R spacetime is necessarily static. The geodesics equations are found and circular ones are analyzed in detail. The super--Poynting and the ``Lagrangian'' Poynting vectors are calculated and their expressions are found for two specific examples. It is shown that for a pulse--type solution, both expressions describe an inward radially directed flow of energy, far behind the wave front. The physical significance of such an effect is discussed.Comment: 19 pages Latex.References added and updated.To appear in Int.J.Theor.Phy

    On the classification of type D spacetimes

    Get PDF
    We give a classification of the type D spacetimes based on the invariant differential properties of the Weyl principal structure. Our classification is established using tensorial invariants of the Weyl tensor and, consequently, besides its intrinsic nature, it is valid for the whole set of the type D metrics and it applies on both, vacuum and non-vacuum solutions. We consider the Cotton-zero type D metrics and we study the classes that are compatible with this condition. The subfamily of spacetimes with constant argument of the Weyl eigenvalue is analyzed in more detail by offering a canonical expression for the metric tensor and by giving a generalization of some results about the non-existence of purely magnetic solutions. The usefulness of these results is illustrated in characterizing and classifying a family of Einstein-Maxwell solutions. Our approach permits us to give intrinsic and explicit conditions that label every metric, obtaining in this way an operational algorithm to detect them. In particular a characterization of the Reissner-Nordstr\"{o}m metric is accomplished.Comment: 29 pages, 0 figure

    Classical relativistic statistical mechanics: The case of a hot dilute plasma

    Get PDF
    Starting from predictive relativistic mechanics we develop a classical relativistic statistical mechanics. For a system of N particles, the basic distribution function depends, in addition to the 6N coordinates and velocities, on N times, instead of a single one as in the usual statistical mechanics. This generalized distribution function obeys N (instead of 1) continuity equations, which give rise to N Liouville equations in the case of a dilute plasma (i.e., to lowest, nonzero order in the charges). Hence, the Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy for the reduced generalized distribution functions is derived. A relativistic Vlasov equation is obtained in this way. Thermal equilibrium is then considered for a dilute plasma. The calculation is explicitly worked out for a weakly relativistic plasma, up to order 1/c2, and known results are recovered

    Liquid Blood Phantoms to Validate NIRS Oximeters: Yeast Versus Nitrogen for Deoxygenation

    Full text link
    Liquid blood phantoms are a tool to calibrate, test and compare near-infrared spectroscopy (NIRS) oximeters. They comprise a mixture of saline, blood and Intralipid, which is subsequently oxygenated and deoxygenated to assess the entire range of tissue oxygen saturation (StO) from 0% to 100%. The aim was to investigate two different deoxygenation methods: yeast versus nitrogen (N) bubbling. The phantom was oxygenated with pure O in both experiments, but deoxygenated by bubbling N in the first and by addition of yeast and glucose in the second experiment. A frequency domain NIRS instrument (OxiplexTS) was used as reference and to monitor changes in the reduced scattering coefficient (Ό') of the phantom. Both deoxygenation methods yielded comparable StO values. The deoxygenation was slower by a factor 2.8 and Ό' decreased faster when bubbling N. The constant bubbling of N mechanically stresses the Intralipid emulsion and causes a decrease in Ό', probably due to aggregation of lipid droplets. Deoxygenation by N requires a more complex, air tight phantom. The gas flow cools the liquid and temperature needs to be monitored more closely. Consequently, we recommend using yeast for phantom deoxygenation

    9286 Stars: An Agglomeration of Stellar Polarization Catalogs

    Get PDF
    This is a revision. The revisions are minor. The new version of the catalog should be used in preference to the old. The most serious error in the older version was that Ξdiff\theta_diff was incorrect, being sometimes far too large, for Reiz and Franco entries; the correct values are all zero for that reference. We present an agglomeration of stellar polarization catalogs with results for 9286 stars. We have endeavored to eliminate errors, provide accurate (arcsecond) positions, sensibly weight multiple observations of the same star, and provide reasonable distances. This catalog is included as an ASCII file (catalog.txt) in the source of this submission.Comment: The most serious error in the older version was that Ξdiff\theta_diff was incorrect, being sometimes far too large, for Reiz and Franco entries; the correct values are all zero for that reference. 11 pages, no figures. Accepted for Astronomical Journal. Catalog also available as an ASCII file by anonymous FTP from ftp://vermi.berkeley.edu/pub/polcat/p14.ou

    Frame dragging, vorticity and electromagnetic fields in axially symmetric stationary spacetimes

    Full text link
    We present a general study about the relation between the vorticity tensor and the Poynting vector of the electromagnetic field for axially symmetric stationary electrovacuum metrics. The obtained expressions allow to understand the role of the Poynting vector in the dragging of inertial frames. The particular case of the rotating massive charged magnetic dipole is analyzed in detail. In addition, the electric and magnetic parts of the Weyl tensor are calculated and the link between the later and the vorticity is established. Then we show that, in the vacuum case, the necessary and sufficient condition for the vanishing of the magnetic part is that the spacetime be static.Comment: 16 pages Latex. Some minor changes in the text and typos correcte

    Classical dilute relativistic plasma in equilibrium. Two-particle distribution function

    Get PDF
    We consider here a dilute hot plasma which is homogeneous and in equilibrium in the framework of classical relativistic statistical mechanics as formulated recently by the authors. No external fields are present. The two-particle distribution function of the plasma is calculated for any temperature. This distribution will be physically significant, as long as the creation of pairs can be neglected. Several limits which apply at low or high temperatures are discussed. Comparison with previous work from several authors is made
    • 

    corecore