567 research outputs found

    Their pain gives us pleasure: How intergroup dynamics shape empathic failures and counter-empathic responses

    Get PDF
    Despite its early origins and adaptive functions, empathy is not inevitable; people routinely fail to empathize with others, especially members of different social or cultural groups. In five experiments, we systematically explore how social identity, functional relations between groups, competitive threat, and perceived entitativity contribute to intergroup empathy bias: the tendency not only to empathize less with out-group relative to in-group members,but also to feel pleasure in response to their pain (and pain in response to their pleasure). When teams are set in direct competition, affective responses to competition-irrelevant events are characterized not only by less empathy toward out-group relative to in-groupmembers, but also by increased counter-empathic responses: Schadenfreude and Glückschmerz (Experiment 1). Comparing responses to in-group and out-group targets against responses to unaffiliated targets in this competitive context suggests that intergroup empathy bias may be better characterized by out-group antipathy rather than extraordinary in-group empathy (Experiment 2). We also find that intergroup empathy bias is robust to changes in relative group standing—feedback indicating that the out-group has fallen behind (Experiment 3a) or is no longer a competitive threat (Experiment 3b) does not reduce the bias. However, reducing perceived in-group and out-group entitativity can significantly attenuate intergroup empathy bias (Experiment 4). This research establishes the boundary conditions of intergroup empathy bias and provides initial support for a more integrative framework of group-based empathy.Psycholog

    Dissociable contributions of the prefrontal cortex in group-based cooperation

    Get PDF
    © The Author(s) (2018). Published by Oxford University Press. The success of our political institutions, environmental stewardship and evolutionary fitness all hinge on our ability to prioritize collective-interest over self-interest. Despite considerable interest in the neuro-cognitive processes that underlie group cooperation, the evidence to date is inconsistent. Several papers support models of prosocial restraint, while more recent work supports models of prosocial intuition.We evaluate these competing models using a sample of lesion patients with damage to brain regions previously implicated in intuition and deliberation. Compared to matched control participants (brain damaged and healthy controls), we found that patients with dorsolateral prefrontal cortex (dlPFC) damage were less likely to cooperate in a modified public goods game, whereas patients with ventromedial prefrontal cortex (vmPFC) damage were more likely to cooperate. In contrast, we observed no association between cooperation and amygdala damage relative to controls. These findings suggest that the dlPFC, rather than the vmPFC or amygdala, plays a necessary role in groupbased cooperation. These findings suggest cooperation does not solely rely on intuitive processes. Implications for models of group cooperation are discussed

    Limitations of Quantitative Blush Evaluator (QuBE) as myocardial perfusion assessment method on digital coronary angiograms

    Get PDF
    Background and Aim: Quantitative Blush Evaluator (QuBE) is a software application that allows quantifying myocardial perfusion in coronary angiograms after a percutaneous coronary intervention. QuBE has some limitations such as the application of a crude filter to remove large scale structures and the absence of correction for cardiac motion. This study investigates the extent of these limitations and we hypothesize that enhanced image analysis methods can provide improvements. Methods: We calculated QuBE scores of 117 patients from the HEBE Trial and determined its association with the Myocardial Blush Grade (MBG) score. Accuracy of large-structure removal is qualitatively assessed for various sizes of a median filter. The influence of cardiac motion was evaluated by comparing the blush curve and QuBE score of the native QuBE with manually motion-corrected QuBE for 40 patients. The effect of different kernel sizes and motion correction to a potential improvement of the association between QuBE score and MBG was studied. Results: In our population, there was no significant association between QuBE score and MBG (p = 0.14). Median filters of various kernel sizes were unable to remove large structure related noise. Variations in filters and cardiac movement correction did not result in an improvement in the association with MBG scores (observer 1: p = 0.66; observer 2: p = 0.72). Conclusions: There was no significant association of QuBE with MBG scores in our population, which suggests that QuBE is not suitable for a quantitative assessment of myocardial perfusion. Alternative kernel sizes for the large structure removal filter and cardiac motion correction did not improve QuBE performance. Relevance for patients: Further improvements of QuBE to overcome its inherent limitations are necessary in order to establish QuBE as a reliable myocardial perfusion assessment method

    Spatial modeling of the 3D morphology of hybrid polymer-ZnO solar cells, based on electron tomography data

    Get PDF
    A spatial stochastic model is developed which describes the 3D nanomorphology of composite materials, being blends of two different (organic and inorganic) solid phases. Such materials are used, for example, in photoactive layers of hybrid polymer zinc oxide solar cells. The model is based on ideas from stochastic geometry and spatial statistics. Its parameters are fitted to image data gained by electron tomography (ET), where adaptive thresholding and stochastic segmentation have been used to represent morphological features of the considered ET data by unions of overlapping spheres. Their midpoints are modeled by a stack of 2D point processes with a suitably chosen correlation structure, whereas a moving-average procedure is used to add the radii of spheres. The model is validated by comparing physically relevant characteristics of real and simulated data, like the efficiency of exciton quenching, which is important for the generation of charges and their transport toward the electrodes.Comment: Published in at http://dx.doi.org/10.1214/11-AOAS468 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    In-Silico Trials for Treatment of Acute Ischemic Stroke

    Get PDF
    Despite improved treatment, a large portion of patients with acute ischemic stroke due to a large vessel occlusion have poor functional outcome. Further research exploring novel treatments and better patient selection has therefore been initiated. The feasibility of new treatments and optimized patient selection are commonly tested in extensive and expensive randomized clinical trials. in-silico trials, computer-based simulation of randomized clinical trials, have been proposed to aid clinical trials. In this white paper, we present our vision and approach to set up in-silico trials focusing on treatment and selection of patients with an acute ischemic stroke. The INSIST project (IN-Silico trials for treatment of acute Ischemic STroke, www.insist-h2020.eu) is a collaboration of multiple experts in computational science, cardiovascular biology, biophysics, biomedical engineering, epidemiology, radiology, and neurology. INSIST will generate virtual populations of acute ischemic stroke patients based on anonymized data from the recent stroke trials and registry, and build on the existing and emerging in-silico models for acute ischemic stroke, its treatment (thrombolysis and thrombectomy) and the resulting perfusion changes. These models will be used to design a platform for in-silico trials that will be validated with existing data and be used to provide a proof of concept of the potential efficacy of this emerging technology. The platform will be used for preliminary evaluation of the potential suitability and safety of medication, new thrombectomy device configurations and methods to select patient subpopulations for better treatment outcome. This could allow generating, exploring and refining relavant hypotheses on potential causal pathways (which may follow from the evidence obtained from clinical trials) and improving clinical trial design. Importantly, the findings of the in-silico trials will require validation under the controlled settings of randomized clinical trials

    Non-invasive assessment of damping of blood flow velocity pulsatility in cerebral arteries with MRI

    Get PDF
    Background Damping of heartbeat-induced pressure pulsations occurs in large arteries such as the aorta and extends to the small arteries and microcirculation. Since recently, 7 T MRI enables investigation of damping in the small cerebral arteries. Purpose To investigate flow pulsatility damping between the first segment of the middle cerebral artery (M1) and the small perforating arteries using magnetic resonance imaging. Study Type Retrospective. Subjects Thirty-eight participants (45% female) aged above 50 without history of heart failure, carotid occlusive disease, or cognitive impairment. Field Strength/Sequence 3 T gradient echo (GE) T1-weighted images, spin-echo fluid-attenuated inversion recovery images, GE two-dimensional (2D) phase-contrast, and GE cine steady-state free precession images were acquired. At 7 T, T1-weighted images, GE quantitative-flow, and GE 2D phase-contrast images were acquired. Assessment Velocity pulsatilities of the M1 and perforating arteries in the basal ganglia (BG) and semi-oval center (CSO) were measured. We used the damping index between the M1 and perforating arteries as a damping indicator (velocity pulsatility(M1)/velocity pulsatility(CSO/BG)). Left ventricular stroke volume (LVSV), mean arterial pressure (MAP), pulse pressure (PP), and aortic pulse wave velocity (PWV) were correlated with velocity pulsatility in the M1 and in perforating arteries, and with the damping index of the CSO and BG. Statistical Tests Correlations of LVSV, MAP, PP, and PWV with velocity pulsatility in the M1 and small perforating arteries, and correlations with the damping indices were evaluated with linear regression analyses. Results PP and PWV were significantly positively correlated to M1 velocity pulsatility. PWV was significantly negatively correlated to CSO velocity pulsatility, and PP was unrelated to CSO velocity pulsatility (P = 0.28). PP and PWV were uncorrelated to BG velocity pulsatility (P = 0.25; P = 0.68). PWV and PP were significantly positively correlated with the CSO damping index. Data Conclusion Our study demonstrated a dynamic damping of velocity pulsatility between the M1 and small cerebral perforating arteries in relation to proximal stress. Level of Evidence 4 Technical Efficacy Stage 1Cardiovascular Aspects of Radiolog

    qTICI: Quantitative assessment of brain tissue reperfusion on digital subtraction angiograms of acute ischemic stroke patients

    Get PDF
    Background: The Thrombolysis in Cerebral Infarction (TICI) scale is an important outcome measure to evaluate the quality of endovascular stroke therapy. The TICI scale is ordinal and observer-dependent, which may result in suboptimal prediction of patient outcome and inconsistent reperfusion grading. Aims: We present a semi-automated quantitative reperfusion measure (quantified TICI (qTICI)) using image processing techniques based on the TICI methodology. Methods: We included patients with an intracranial proximal large vessel occlusion with complete, good quality runs of anteroposterior and lateral digital subtraction angiography from the MR CLEAN Registry. For each vessel occlusion, we identified the target downstream territory and automatically segmented the reperfused area in the target downstream territory on final digital subtraction angiography. qTICI was defined as the percentage of reperfused area in target downstream territory. The value of qTICI and extended TICI (eTICI) in predicting favorable functional outcome (modified Rankin Scale 0–2) was compared using area under receiver operating characteristics curve and binary logistic regression analysis unadjusted and adjusted for known prognostic factors. Results: In total, 408 patients with M1 or internal carotid artery occlusion were included. The median qTICI was 78 (interquartile range 58–88) and 215 patients (53%) had an eTICI of 2C or higher. qTICI was comparable to eTICI in predicting favorable outcome with area under receiver operating characteristics curve of 0.63 vs. 0.62 (P = 0.8) and 0.87 vs. 0.86 (P = 0.87), for the unadjusted and adjusted analysis, respectively. In the adjusted regression analyses, both qTICI and eTICI were independently associated with functional outcome. Conclusion: qTICI provides a quantitative measure of reperfusion with similar prognostic value for functional outcome to eTICI score

    Unsteady swirl distortion characteristics for S-ducts using Lattice Boltzmann and time-resolved, stereo PIV methods

    Get PDF
    The unsteady flowfields generated by convoluted aero engine intakes are major sources of instabilities that can compromise the performance of the downstream turbomachinery components. This highlights theneed for high spatial and temporal resolution measurements that will allow a greater understanding of the aerodynamics but also improvements in our current predictive capability for such complex flows. This paper presents the validation of a modern Lattice Boltzmann method (LBM)to predict the unsteady flow and swirl distortion characteristics within a representative S-duct intake.The numerical results are compared against high spatial and temporal resolutionParticle Image Velocimetry(PIV)data for the same S-duct configuration at an inlet Mach number of0.27.The work demonstrates that LBM is broadly able to capture the flow topologies and temporal characteristics with the exception of the magnitude of the unsteady fluctuations which were found to be notably under-predicted compared to the PIV data. Proper Orthogonal Decomposition analysis shows that LBM is able to provide the key flow modes and their spectral distributions which were found broadly in alignment with the PIV data. A statistical assessment of the unsteady distortionhistoryhighlights that LBM can also provide representative distributions of the main swirl distortion descriptors. Overall the work demonstrates that LBM shows promising potential for S-duct unsteady flow predictions which combined with the minimum computational grid requirements, robustness and fast convergence make it an attractive solution for wider use in thearea of unsteady propulsion system aerodynamics

    Understanding Work Practices of Autonomous Agile Teams: A Social-psychological Review

    Full text link
    The purpose of this paper is to suggest additional aspects of social psychology that could help when making sense of autonomous agile teams. To make use of well-tested theories in social psychology and instead see how they replicated and differ in the autonomous agile team context would avoid reinventing the wheel. This was done, as an initial step, through looking at some very common agile practices and relate them to existing findings in social-psychological research. The two theories found that I argue could be more applied to the software engineering context are social identity theory and group socialization theory. The results show that literature provides social-psychological reasons for the popularity of some agile practices, but that scientific studies are needed to gather empirical evidence on these under-researched topics. Understanding deeper psychological theories could provide a better understanding of the psychological processes when building autonomous agile team, which could then lead to better predictability and intervention in relation to human factors
    • …
    corecore