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A spatial stochastic model is developed which describes the 3D nanomor-
phology of composite materials, being blends of two different (organic and
inorganic) solid phases. Such materials are used, for example, in photoactive
layers of hybrid polymer zinc oxide solar cells. The model is based on ideas
from stochastic geometry and spatial statistics. Its parameters are fitted to
image data gained by electron tomography (ET), where adaptive threshold-
ing and stochastic segmentation have been used to represent morphological
features of the considered ET data by unions of overlapping spheres. Their
midpoints are modeled by a stack of 2D point processes with a suitably cho-
sen correlation structure, whereas a moving-average procedure is used to add
the radii of spheres. The model is validated by comparing physically rele-
vant characteristics of real and simulated data, like the efficiency of exciton
quenching, which is important for the generation of charges and their trans-
port toward the electrodes.

1. Introduction. Using methods from stochastic geometry and spatial statis-
tics, a stochastic model is developed which describes the 3D nanomorphology of
composite materials, being blends of two different (organic and inorganic) solid
phases. Such materials are used, for example, in photoactive layers of hybrid poly-
mer zinc oxide (ZnO) solar cells where the two solid phases play the role of a poly-
meric electron donor, consisting of, for example, poly(3-hexylthiophene), and an
inorganic ZnO-electron acceptor, respectively. There is a great advantage of poly-
mer solar cells due to their potentially low production costs, in comparison with
classical silicon solar cells. However, the efficiency of polymer solar cells critically
depends on the intimacy of mixing of the donor and acceptor semiconductors used

Received August 2010; revised March 2011.
1Supported by Deutsche Forschungsgemeinschaft (DFG) under the Priority Programme: “Elemen-

tary Processes of Organic Photovoltaics” (SPP 1355).
Key words and phrases. Marked point process, parameter estimation, spatial statistics, stochastic

geometry, adaptive thresholding, segmentation, model fitting, simulation, model validation, exciton
quenching, polymer solar cells.

1920

http://www.imstat.org/aoas/
http://dx.doi.org/10.1214/11-AOAS468
http://www.imstat.org


MODELING OF THE 3D MORPHOLOGY OF POLYMER SOLAR CELLS 1921

in these devices to create charges as well as on the presence of unhindered percola-
tion pathways in the individual solid phases of the composite material to transport
positive and negative charges toward electrodes; see, for example, Yang and Loos
(2007). It is therefore very important to have tools at one’s disposal which are suit-
able to analyze and model the 3D morphology of these materials quantitatively. So
far, no such tools are available in literature due to the fact that imaging of the 3D
morphology in high resolution is a difficult task. The first 3D images of photoac-
tive layers in polymer solar cells, gained by means of electron tomography (ET),
have been published only recently; see van Bavel et al. (2009) and Oosterhout et al.
(2009).

In the present paper, such 3D images are used to fit our model to real data.
The model then helps to get a better insight into the impact of morphology on the
performance of polymer solar cells and, simultaneously, it can be used for virtual
scenario analyses, where model-based morphologies of solar cells are simulated to
identify polymer solar cells with improved nanostructures.

The model developed in this paper is based on methods from stochastic geo-
metry and spatial statistics; see Kendall and Molchanov (2010) and Gelfand et al.
(2010) for comprehensive surveys on recent results in these fields. In particular,
stationary marked point processes are considered as models for complex point
patterns extracted from ET images, where the points are associated with additional
information, so-called “marks.”

Note that point processes in 3D have been used for many years to analyze geo-
metrically complex point patterns; see, for example, Baddeley et al. (1987). More
recently, further case studies in 3D point process modeling have been performed,
for example, in Ballani, Daley and Stoyan (2005), Beil et al. (2005) and Stoica,
Gregori and Mateu (2005); see also Baddeley et al. (2006). Besides, there are many
monographs dealing with point processes in multidimensional spaces and their sta-
tistical inference and simulation. We refer, for instance, to Daley and Vere-Jones
(2008), Diggle (2003), Illian et al. (2008), Møller and Waagepetersen (2004), as
well as Stoyan, Kendall and Mecke (1995).

The paper is organized as follows. Section 2 briefly describes the considered
solar cells and the corresponding image data on which the model is based. In par-
ticular, in Section 2.3, the main ideas of a multi-scale approach to the segmentation
of 3D images are summarized, which has been developed recently in Thiedmann
et al. (2011). The crucial step of this approach is to find an efficient representation
of the binarized and morphologically smoothed images by unions of overlapping
spheres.

Then, in Section 3, the spatial stochastic model for the ZnO phase is intro-
duced, separately for morphologically smoothed ZnO domains (macro-scale) and
for those parts representing the difference between the smoothed and nonsmoothed
binary images (micro-scale). Based on unions of overlapping spheres represent-
ing the ZnO domains, that is, marked point patterns extracted from ET images,
a stochastic model is built for the smoothed 3D morphology (macro-scale) of the
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photoactive layers considered in this paper. Since a strong correlation of midpoints
of spheres in z-direction is observed, we propose a multi-layer approach consid-
ering sequences of correlated 2D point processes to model the 3D point patterns
of midpoints. The members of these sequences belong to a suitably chosen class
of planar Poisson cluster processes, being parallel to the x–y-plane. In particular,
a generalized version of Matérn cluster processes is considered, where the clus-
ter points are scattered in uniformly oriented ellipses around their cluster centers
(Section 3.1.1). To model the 3D point patterns of midpoints, a Markov chain with
stationary initial distribution is constructed, which consists of highly correlated
Matérn cluster processes (Section 3.1.2). It can be seen as a stationary point pro-
cess in 3D, where the radii of spheres are considered as marks of this point process
(Section 3.1.3). Subsequently, a spatial stochastic model for the micro-scale part
of the morphological structure is developed (Section 3.2). It is used to invert mor-
phological smoothing and completes our model for the 3D morphology of hybrid
polymer-ZnO solar cells. Furthermore, a method to fit model parameters to real
image data is proposed.

Section 4 deals with model validation. To evaluate the goodness of fit, we com-
pare model characteristics which have been computed from real and simulated
data, respectively, like the volume fractions of voxels contributing to monotonous
percolation pathways through the photoactive layer, the distribution of spherical
contact distances, and the probabilities of exciton quenching. These characteristics
have already been considered in Oosterhout et al. (2009), since they are strongly
related with the performance of solar cells. Finally, Section 5 concludes and pro-
vides a short outlook regarding possible future research.

2. Polymer solar cells. In this section some necessary background informa-
tion regarding the functionality of polymer solar cells is provided, together with
corresponding image data on which the model is based.

2.1. Photoactive layers. We consider photoactive layers of hybrid polymer
zinc oxide (ZnO) solar cells where the two solid phases play the role of a poly-
meric electron donor, consisting of, for example, poly(3-hexylthiophene), and an
inorganic ZnO-electron acceptor, respectively. Upon exposure to light, photons
are absorbed in the polymer phase and so-called “excitons,” that is, photoexcited
electron–hole pairs, evolve. Excitons are neutral quasi-particles which diffuse in-
side the polymer phase within a limited lifetime; see Shaw, Ruseckas and Samuel
(2008). If an exciton reaches the interface to the ZnO phase, it is split up into a free
electron (negative charge) in the ZnO and a hole (positive charge) in the polymer
phase. This process is commonly referred to as quenching, because it reduces the
intrinsic fluorescent decay of the exciton in the polymer. Provided that the elec-
trons in the ZnO phase and the holes in the polymer phase reach the electrodes
at the top and bottom of the photoactive layer, respectively, photocurrent is gen-
erated. A schematic illustration of the morphology of photoactive layers in hybrid
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FIG. 1. Schematic layout of a polymer-ZnO thin film solar cell, showing the percolation of photo-
generated holes (+) and electrons (−).

polymer-ZnO solar cells is shown in Figure 1, where the electrodes are supposed
to be parallel to the x–y-plane. For further information about polymer solar cells
and the physical processes therein we refer, for example, to Brabec, Scherf and
Dyakonov (2008).

Note that the extent of blending of the two materials has a large impact on the
efficiency of these solar cells, because not all excitons are quenched due to their
limited lifetimes. Thus, a morphology as displayed in Figure 1, where both ma-
terials are mixed intimately, is desirable since the excitons are likely to reach the
interface and charges can be generated. In other words, for a morphology which
would be ideal with respect to this aspect of functionality, each location of the
polymer phase should have a distance to the ZnO phase that is smaller than the
diffusion length of excitons. For each location within the polymer phase, the frac-
tion of excitons reaching the interface is called the quenching probability at this
location. The mean of these quenching probabilities, that is, the quenching proba-
bility at a randomly chosen location of the polymer phase, is called the quenching
efficiency.

Furthermore, the existence of unhindered percolation pathways within both
phases, ZnO and polymer, is crucial since the generated charges have to be trans-
ported to the electrodes throughout the phases. Because of the electric field be-
tween the electrodes, these pathways should be preferably monotonous. Hence,
to obtain solar cells with high efficiency, an intimately mixed morphology with
monotonous percolation pathways for both charge carriers is desirable and should
be taken into account when producing devices. The stochastic model developed in
the present paper will be used to identify morphologies with improved efficiency
by generating virtual morphologies and investigating the transport processes of
electrons and excitons, respectively. This will be the subject of a forthcoming pa-
per.

2.2. Electron tomography images. The image data have been gained by elec-
tron tomography (ET); see van Bavel et al. (2009) and Oosterhout et al. (2009). In
particular, we consider images for three devices with different thicknesses of the
photoactive layers: 57 nm, 100 nm and 167 nm. For each of the three thicknesses,
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FIG. 2. 2D images of hybrid polymer-ZnO solar cells; first column: 57 nm, second: 100 nm, third:
167 nm; first row: original grayscale images, second: binarized images.

the 3D ET images are given as stacks of 2D grayscale images (being parallel to the
x–y-plane, say), which are numbered according to their location in z-direction.
The sizes of these images in the x–y-plane are 934 × 911 voxels for the 57 nm
film, and 942 × 911 voxels for the other two thicknesses. Each voxel represents a
cube with side length of 0.71 nm.

Figure 2 shows representative 2D slices for the three film thicknesses, where the
darker parts of the images represent the ZnO phase due to a higher electron density
compared to polymer. The images displayed in Figure 2 indicate clear structural
differences for the three films. With increasing layer thickness, the separated do-
mains of polymer and ZnO are getting finer. In particular, the thinnest film, that
is, the photoactive layer with thickness of 57 nm, features large domains of both
polymer and ZnO. The stochastic 3D model to be fitted takes these morphological
differences into account. More precisely, the model type will be the same for all
three layer thicknesses. Only the values of some model parameters will be different
for the varying morphologies; see Section 3 below.

To develop a stochastic model for the 3D morphology of hybrid polymer-ZnO
solar cells, the 3D ET grayscale images have to be binarized appropriately. Bina-
rization is necessary since we need to decide which voxels are classified as polymer
and which as ZnO. An elementary approach to binarize grayscale images is to use a
global threshold: voxels are set to white (polymer) if their grayscale value exceeds
a certain threshold, and are otherwise set to black (ZnO). However, it is difficult
to find a single global threshold to binarize the ET images because of the irreg-
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ular brightness of these images. Thus, instead of considering global thresholds,
a method of adaptive thresholding has been used for binarization; see Thiedmann
et al. (2011). This method is based on techniques of Yanowitz and Bruckstein
(1989) and Blayvas, Bruckstein and Kimmel (2006), where the main idea is to
construct a threshold surface which is location-dependent and takes local condi-
tions like overexposure or underexposure into account. Examples of binarizing the
ET images by adaptive thresholding are displayed in Figure 2.

2.3. Segmentation of binarized images. In this section we briefly summarize
the main ideas of a multi-scale approach to the segmentation of 3D images, which
has been developed recently in Thiedmann et al. (2011). The crucial step is to find
an efficient representation of the binarized and morphologically smoothed images
by unions of overlapping spheres.

Let B denote the ZnO phase of the binarized images. Since the morphology
of the set B is rather complex (see Figure 2), it is difficult to describe this mor-
phology directly, just by a single stochastic model. We therefore developed a
multi-scale approach to represent the ZnO phase by different structural compo-
nents. Each of them will be described separately by suitably chosen stochastic
models. More precisely, we distinguish between a macro-scale component of the
binarized ET images, which is obtained by morphological smoothing, and several
micro-scale components, which consist of those voxels that have been misspeci-
fied by the morphological smoothing; see Figure 3. The intention of morphological
smoothing is to reduce the structural complexity of the binarized ET images, that
is, to omit very fine structural components such as “thin ZnO branches,” that is,
thin ZnO parts connected to larger ZnO domains, “isolated ZnO particles,” that is,

FIG. 3. Original image split up into structural components at two different scales.
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small ZnO particles in the polymer domains, and “polymeric holes,” that is, small
polymeric particles inside the ZnO domains. The morphological transformations
which we use for smoothing the ZnO phase B of the original binarized ET images
are twofold: “dilation” and “erosion.” The morphologically smoothed version of
the set B will thus be denoted by B ′′.

In the next step a stochastic algorithm [see Thiedmann et al. (2011)] is used to
efficiently represent the set B ′′ by a union of spheres, which is denoted by B ′′′.
This leads to an enormous data reduction. Another advantage of this representa-
tion of the set B ′′ by unions of spheres is that it allows the interpretation of the
morphologically smoothed ZnO phase as a realization of a marked point process
where the midpoints of the spheres are the points and the corresponding radii the
marks.

Recall that in the macro-scale component B ′′ of the binarized ET images as
well as in its representation B ′′′ by unions of spheres, some structural details
of the original ZnO phase B , like isolated particles, thin branches and poly-
meric holes, are omitted. Furthermore, the boundaries of ZnO domains are mor-
phologically smoothed and slightly enlarged by dilation. Hence, when compar-
ing the sets B and B ′′′, we observe that some voxels are misspecified, that is,
indicated as ZnO although originally being polymer, and vice versa. The set
B�B ′′′ = (B ∪ B ′′′) \ (B ∩ B ′′′) of misspecified voxels is subdivided into several
subcomponents, where each of these subcomponents will be modeled separately.
First, two main types of misspecifications are distinguished: outer misspecifica-
tions and inner misspecifications; see Figure 4. Each ZnO voxel that is not covered
by a sphere, that is, belonging to the set B \ B ′′′ and therefore constituted as poly-
mer, is called an outer misspecification. Typically, thin branches and isolated ZnO
particles are outer misspecifications. On the other hand, each polymer voxel which
is covered by a sphere, that is, belonging to Bc ∩ B ′′′ and constituted as ZnO, is
called an inner misspecification. Inner misspecifications are further subdivided into
boundary misspecifications and interior misspecifications. On the one hand, poly-
mer voxels (belonging to Bc), located near the boundary ∂B ′′ of the macro-scale
component B ′′ and covered by a sphere, are called boundary misspecifications. On

FIG. 4. First: binarized (nonsmoothed) 2D slice of 57 nm file; second: representation by unions of
spheres; third: outer misspecifications; fourth: inner misspecifications (boundary and interior).



MODELING OF THE 3D MORPHOLOGY OF POLYMER SOLAR CELLS 1927

the other hand, each inner misspecification which is not a boundary misspecifi-
cation is called an interior misspecification. Typically, polymeric holes belong to
interior misspecifications.

3. Stochastic modeling. We now present our approach to stochastic model-
ing of the 3D nanomorphology of the ZnO phase in photoactive layers with three
different thicknesses which are given by the binarized ET images described in Sec-
tion 2.2. Note that the model type is the same for all three thicknesses, just the fitted
values of some model parameters are different. This means, in particular, that our
model can be used for computer-based scenario analyses with the general objective
of developing improved materials and technologies for polymer solar cells.

In accordance with the multi-scale representation of the ZnO phase which has
been described in Section 2.3, we will establish stochastic simulation models sep-
arately for the morphologically smoothed ZnO domains represented by unions of
overlapping spheres, that is, the macro-scale representation of the ZnO phase, and
for the three types of misspecifications, that is, the micro-scale components.

3.1. Point-process model for systems of overlapping spheres. To begin with,
we develop a point-process model which describes the macro-scale component
of the ZnO phase represented by unions of spheres. This model is constructed in
several steps. First we consider 2D point processes for those midpoints of spheres
which belong to single slices of voxels, being parallel to the x–y-plane. Since a
strong correlation of midpoints spheres in z-direction is observed, we propose a
multi-layer approach considering sequences of correlated 2D point processes to
model the 3D point patterns of midpoints.

The members of these sequences belong to a suitably chosen class of planar
Poisson cluster processes. In particular, elliptical Matérn cluster processes are con-
sidered, where the cluster points are scattered in ellipses of uniformly distributed
orientation around their cluster centers. To model the 3D point patterns of mid-
points, a Markov chain with stationary initial distribution is constructed, which
consists of highly correlated Matérn cluster processes. It can be seen as a stationary
point process in 3D, where the radii of spheres are considered as marks of this point
process. The mark correlation functions, which have been computed for the radii
of spheres extracted from ET images, show strong positive correlations for small
distances between midpoints. Hence, for a given configuration of midpoints, the
radii associated with these midpoints are not modeled just by independent mark-
ing, but a certain moving-average procedure is proposed. Note that our model of
a stationary marked point process in 3D describing the macro-scale component of
the ZnO phase is not isotropic. This is in accordance with the nanomorphology
observed in the ET images; see Oosterhout et al. (2009).

3.1.1. Elliptical Matérn cluster processes. To get an idea which class of point
processes is suitable to model the midpoints belonging to the individual slices of
voxels, we consider the pair correlation function g : (0,∞) → (0,∞) of stationary
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FIG. 5. Top: point patterns of midpoints in 2D slices (a = 57 nm, b = 100 nm, c = 167 nm); bottom:
estimated pair correlation functions (d = 57 nm, e = 100 nm, f = 167 nm).

and isotropic point processes in R
2. Note that g(r) is proportional to the relative

frequency of point pairs with distance r > 0 from each other; see, for example,
Illian et al. (2008). Then, for each of the three photoactive layers with thicknesses
of 57 nm, 100 nm, and 167 nm, the values ĝ(r) of the pair correlation function
have been estimated for distances r within some interval (0, rmax); see Figure 5.

Since ĝ(r) > 1 for small r > 0, these estimates clearly indicate clustering of
points, which can also directly be seen from the point patterns shown in Figure 5.
The clusters appearing in these point patterns seem to be located in relatively small
(bounded) areas, which corresponds to the fact that ĝ(r) ≈ 1 for sufficiently large
r > 0. The shapes of the clusters are not circular, but rather elongated. Hence, we
propose to consider Matérn cluster processes, where the cluster points are scattered
in ellipses of uniformly distributed orientation around their cluster centers.

This class of (elliptical) Matérn cluster processes in R
2 can be described by a

vector of four parameters: (λc, λd, a, b), where λc is the intensity of the station-
ary Poisson point process {Tn,n ≥ 1} of cluster centers, a and b with a > b > 0
are the semi-axes of (random) ellipses Ea,b(Tn, ζn) ⊂ R

2 centered at the points
Tn of the Poisson process {Tn} of cluster centers and rotated around Tn by ran-
dom angles ζn which are independent and uniformly distributed on the interval
[0, π), and λd is the intensity of the stationary Poisson processes {Sni, i ≥ 1} of
cluster members which are released by the cluster centers Tn within the ellipses
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Ea,b(Tn, ζn). The Matérn cluster process is then defined as the random point pat-
tern {Sn} given by {Sn} = ⋃∞

n=1({Sni, i ≥ 1} ∩ Ea,b(Tn, ζn)), where the sequences
{ζn}, {Tn}, {S1i}, {S2i}, . . . are assumed to be independent.

3.1.2. Markov chain of Matérn cluster processes. There are strong similarities
between consecutive 2D slices in terms of a high correlation of midpoint locations
in z-direction as well as approximately equal numbers of points. Figure 6 shows a
series of such consecutive 2D slices from the 57 nm data set.

As a consequence, it is not suitable to model the stacks of these 2D point pat-
terns by sequences of independent Matérn processes. But the (vertical) correlation
structure visualized in Figure 6 can be taken into account by considering a Markov
chain of Matérn processes. This allows us to model small displacements of clusters
when passing from slice to slice. Furthermore, “births” and “deaths” of clusters in
z-direction can also be modeled in this way. In other words, we consider a certain
class of spatial birth-and-death processes with random displacement of points; see,
for example, Møller and Waagepetersen (2004).

For each integer z ≥ 1, let {B(z)
n , n ≥ 1} be a stationary Poisson point process in

R
2 with intensity λ′

c such that 0 < λ′
c < λc, and let {δ(z)

n , n ≥ 1} be an independent
and identically distributed (i.i.d.) sequence of Bernoulli random variables, which
is independent of {B(z)

n }, where P(δ
(z)
n = 1) = p for some p ∈ (0,1). Note that

{B(z)
n } and {δ(z)

n } will be used in order to model “births” and “deaths” of cluster
centers, respectively.

For each integer z ≥ 1, an i.i.d. sequence {D(z)
n } of random displacement vectors

D
(z)
1 ,D

(z)
2 , . . . with values in R

2 is considered, which is independent of {B(z)
n } and

{δ(z)
n }. We assume that the random vectors D

(z)
1 ,D

(z)
2 , . . . are uniformly distributed

in the set b(o, r ′′) \ b(o, r ′), where r ′ and r ′′ denote the size of minimum and
maximum displacement, respectively; 0 < r ′ < r ′′.

Then, a (stationary) Markov chain {{S(z)
n }, z ≥ 1} of Matérn processes can be

constructed as follows. For z = 1, let {S(1)
n } be an elliptical Matérn cluster process

FIG. 6. Point patterns of midpoints for successive 2D-slices from the 57 nm data set (a = slice 35,
b = slice 36, c = slice 37).
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FIG. 7. (a) initial 2D point pattern; (b) displacement of cluster centers, including “birth” and
“death;” (c) 3D point pattern; (d) union of spheres.

as introduced in Section 3.1.1, that is, {S(1)
n } = ⋃∞

n=1({Sni, i ≥ 1} ∩ Ea,b(Tn, ζn)).
Assume that the “birth rate” λ′

c and the “survival probability” p satisfy λcp+λ′
c =

λc, where λc is the intensity of the Poisson process {Tn} of cluster centers. For
z = 2, the Poisson process {T (2)

n } of cluster centers is then given by {T (2)
n , n ≥ 1} =⋃

j : δ
(1)
j =1

{T (1)
j + D

(1)
j } ∪ {B(1)

n , n ≥ 1}. The Poisson process {T (3)
n } is constructed

in the same way as {T (2)
n }, that is,

{
T (3)

n , n ≥ 1
} = ⋃

j : δ
(2)
j =1

{
T

(2)
j + D

(2)
j

} ∪ {
B(2)

n , n ≥ 1
}
,

and so on; see also Figure 7. The Matérn processes {S(2)
n }, {S(3)

n }, . . . are built sim-
ilarly to the construction of {T (2)

n }, {T (3)
n }, . . . . For example, {S(2)

n } is given by

{
S(2)

n

} = ⋃
j : δ

(1)
j =1

({
Sji + D

(1)
j , i ≥ 1

} ∩ Ea,b

(
T

(1)
j + D

(1)
j , ζj

))

∪
∞⋃

n=1

({
S

(1)
ni , i ≥ 1

} ∩ Ea,b

(
B(1)

n , ζ (1)
n

))
,

where the sequences {ζ (1)
n }, {S(1)

1i }, {S(1)
2i }, . . . are defined in the same way as

{ζn}, {S1i}, {S2i}, . . . introduced in Section 3.1.1.
The Markov chain {{S(z)

n }, z ≥ 1} of Matérn processes introduced above can
be seen as a stationary point process in 3D. It possesses seven (free) parameters:
λc, λd, a, b describing its initial distribution, and p, r ′, r ′′ describing the transi-
tions from step to step, whereas the “birth intensity” λ′

c of (new) cluster centers
is given by λ′

c = λc(1 − p). It turned out that suitable choices for r ′, r ′′ are the
values of r ′ = √

2/2 and r ′′ = 1.5. This means that the uniform distribution of the
displacement vectors D

(z)
1 ,D

(z)
2 , . . . is implemented as (discrete) uniform distribu-

tion on the 8-neighborhood in the considered slice of voxels. Techniques for fitting
the remaining five parameters of the Markov chain {{S(z)

n }, z ≥ 1} are discussed in
Section 3.1.4.
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FIG. 8. Histograms of reduced radii and fitted gamma distributions (solid lines); a = 57 nm,
b = 100 nm, c = 167 nm.

3.1.3. Modeling the radii of spheres. To get an idea which class of mark dis-
tributions is suitable to model the radii of spheres, we computed histograms of
radii which have been extracted from the ET images for each of the three pho-
toactive layers with thicknesses of 57 nm, 100 nm and 167 nm. Recall that in the
sphere-putting algorithm mentioned in Section 2.3 we only consider spheres with
a minimum radius of

√
3 voxel sizes. Hence, instead of computing histograms for

the original radii, say, r1, r2, . . . , we computed histograms for correspondingly
reduced radii r ′

1, r
′
2, . . . , where r ′

n = rn − √
3. It turns out that for all three film

thicknesses, gamma distributions can be fitted quite nicely to the histograms of
reduced radii; see Figure 8. The parameters k and θ of these gamma distributions
�(k, θ) have been estimated using the method of moments; see Table 1.

The mark correlation function of stationary marked point processes is consid-
ered, which describes the spatial correlations of pairs of marks, depending on the
distance vector of the corresponding pairs of points; see, for example, Illian et al.
(2008). For each representation of the three photoactive layers by unions of over-
lapping spheres, the values κ̂(r) of this function have been estimated for distance
vectors of length r . They show strong positive correlations for radii corresponding
to pairs of midpoints with small distances from each other; see Figure 9.

Thus, for a given configuration {s(z)
n , n, z ≥ 1} of midpoints, the radii {R(z)

n , n,

z ≥ 1} associated with these midpoints are not modeled just by independent mark-
ing, but the following moving-average procedure is proposed. For some m ≥ 1, let

TABLE 1
Parameters for gamma distributions of radii

Parameter 57 nm film 100 nm film 167 nm film

k 1.51 1.36 1.26
θ 1.73 0.88 0.93
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FIG. 9. Comparison of estimated (solid) and simulated (dotted) mark correlation functions for
arbitrary distance vectors in 3D of length r ; a = 57 nm, b = 100 nm, c = 167 nm.

{R̃(z)
n , n, z ≥ 1} be an i.i.d. sequence of �(k/m, θ)-distributed random variables,

and let (z1, n1), . . . , (zm,nm) for each index (z, n) denote the indices of the m

nearest neighbors s
(z1)
n1 , . . . , s

(zm)
nm of s

(z)
n [including the point s

(z)
n itself]. Then, the

radius R
(z)
n = √

3 + R̃
(z1)
n1 + · · · + R̃

(zm)
nm is assigned to the midpoint s

(z)
n . The re-

duced radius R
(z)
n − √

3 obtained in this way is �(k, θ)-distributed. It turned out
that for m = 4, the estimated mark correlation functions computed from real data
(i.e., original point pattern and original radii) show a good resemblance to their
simulated counterparts (i.e., original point pattern and simulated radii) for all three
thicknesses of photoactive layers; see Figure 9.

3.1.4. Model fitting for midpoints of spheres. The (overall) intensity of mid-
points of spheres, that is, the intensity λ of the stationary point process {S(z)

n , z,

n ≥ 1} can be easily estimated by λ̂ = #{S(z)
n :S(z)

n ∈ W }/|W |, where #{S(z)
n :S(z)

n ∈
W } is the total number of midpoints in the sampling window W ⊂ R

3 and |W |
denotes the volume of W . Using this formula, the following values have been ob-
tained for the spheres extracted from the binarized ET images: λ̂ = 1.83 · 10−3 for
the 57 nm film, λ̂ = 5.29 · 10−3 for the 100 nm film, and λ̂ = 5.15 · 10−3 for the
167 nm film.

Note that λ = λcλd |Ea,b|, where |Ea,b| denotes the area of an ellipse with semi-
axes a and b. Therefore, in order to determine λd , the estimator λ̂d = λ̂(̂λc|Eâ,b̂|)−1

can be used, provided that an estimator λ̂c for the intensity λc of cluster centers as
well as estimators â and b̂ for the semi-axes a and b are available. Similarly to the
estimation of λd discussed above, the estimator λ̂′

c = λ̂c(1 − p̂) for the birth rate
λ′

c can be considered, provided that estimators λ̂c and p̂ for λc and p are given.
Finally, we derive a so-called minimum-contrast estimator for the vector of the

remaining four parameters λc, a, b and p, where we traverse the parameter space of
these parameters. This means that for each vertex of a certain lattice of parameter
vectors (λc, a, b,p), the 3D point process {S(z)

n , z, n ≥ 1} of midpoints described
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in Sections 3.1.1 and 3.1.2 is simulated in the sampling window W and gamma-
distributed radii are added according to the moving average procedure described
in Section 3.1.3. Then, structural characteristics of simulated unions of spheres
are compared with corresponding structural characteristics of unions of spheres
extracted from binarized ET images.

In particular, consider the empirical distribution function F̂ SCD : [0,∞) →
[0,1] of spherical contact distances from polymer to ZnO, computed for the macro-
scale component of binarized ET images, and let F̂ (x), F̂ (y), F̂ (z) : [0,∞) → [0,1]
denote the empirical chord-length distribution functions of the ZnO domains in
these images along the x-, y- and z-axis, respectively. More information on spher-
ical contact distance distributions and chord length distributions can be found in
Ohser and Mücklich (2000) and in Stoyan, Kendall and Mecke (1995). Consider
the volume fraction V̂ of ZnO, computed for the macro-scale component of bi-
narized ET images, and let V̂ ′ denote the volume fraction of those ZnO voxels
of the macro-scale component contributing to percolation pathways (monotonous
and nonmonotonous) through the photoactive layer.

Let F SCD
λc,a,b,p , F

(x)
λc,a,b,p , F

(y)
λc,a,b,p , F

(z)
λc,a,b,p be the corresponding distribution

functions and Vλc,a,b,p , V ′
λc,a,b,p the volume fractions, respectively, obtained from

simulated 3D morphologies in dependency of λc, a, b and p. Then, each solution
(̂λc, â, b̂, p̂) of the minimization problem

(̂λc, â, b̂, p̂) = argmin
λc,a,b,p

(
wSCD‖F̂ SCD − F SCD

λc,a,b,p‖ + w(x)
∥∥F̂ (x) − F

(x)
λc,a,b,p

∥∥

+ w(y)
∥∥F̂ (y) − F

(y)
λc,a,b,p

∥∥ + w(z)
∥∥F̂ (z) − F

(z)
λc,a,b,p

∥∥
+ w(V )|V̂ − Vλc,a,b,p| + w(V ′)|V̂ ′ − V ′

λc,a,b,p|)

is called a minimum-contrast estimator for (λc, a, b,p), where wSCD,w(x),w(y),

w(z) ≥ 0 and w(V ),w(V ′) ≥ 0 are some weights such that wSCD + w(x) + w(y) +
w(z)w(V ) + w(V ′) = 1, and ‖F̂ − F‖ = supt∈R |F̂ (t) − F(t)| denotes the Kol-
mogorov distance of F̂ and F .

The minimization problem described above is solved numerically, that is, only
a relatively coarse lattice of parameter vectors (λc, a, b,p) can be taken into
account. Table 2 summarizes the results obtained in this way, where we put
wSCD = w(V ) = w(V ′) = 1/4 and w(x) = w(y) = w(z) = 1/(3 · 4) = 1/12. The re-
sults shown in Table 2 nicely reflect the main structural differences and similarities
of the patterns of sphere midpoints for the 57 nm, 100 nm, and 167 nm films: The
estimated values for λc, a and b indicate that the 57 nm film has fewer, but larger
clusters of midpoints than the 100 nm and 167 nm films, whereas the intensity λd

of cluster members is similar for all three films; see also Figure 5. The survival
probability p is close to 1 and, therefore, the birth rate λ′

c is much smaller than the
intensity λc of “old” cluster centers; see Figure 6.
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TABLE 2
Parameters for 3D point processes of midpoints

Parameter 57 nm film 100 nm film 167 nm film

λc 9.0E−5 1.25E−3 1.00E−3
a 45 22 24
b 15 6 10
p 0.987 0.991 0.977
λd 9.59E−3 10.0E−3 6.83E−3
λ′
c 1.17E−6 1.17E−5 2.34E−5

We also remark that the method of statistical model-fitting explained in this
section leads to a relatively high degree of visual coincidence between simulated
and real ET images; see Figure 10. A more formal approach to model validation
will be given later on in Section 4.

3.2. Stochastic modeling of clusters of misspecified voxels. We now develop
a modeling approach for the micro-scale part of the morphological structure. It
is used to stochastically invert the morphological smoothing and completes our
model for the 3D morphology of hybrid polymer-ZnO solar cells. The micro-scale
morphology is modeled separately for each of the three types of misspecifications,
that is, the micro-scale components of outer, boundary, and interior misspecifica-
tions mentioned in Section 2.3.

3.2.1. Outer misspecifications. Recall that each ZnO voxel that is not covered
by a sphere, and therefore constituted as polymer, is said to be an outer misspeci-
fication. They typically form thin branches or small isolated ZnO particles. In the
present section, a stochastic model is proposed for the locations and sizes of clus-
ters of outer misspecifications, that is, the connected components of the set B \B ′′′

FIG. 10. Left: 2D slice of the morphologically smoothed 57 nm film, right: 2D slice of a simulated
union of overlapping spheres, drawn from the fitted 3D model.
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introduced in Section 2.3. We first consider this kind of misspecification, because it
influences the “correction” of boundary misspecifications which will be described
in Section 3.2.2 below.

We assume that the centers of gravity of clusters of outer misspecifications
form a Cox point process, which is also called a doubly stochastic Poisson pro-
cess in literature. The cluster sizes are considered as marks. In particular, un-
der the condition that a realization {(s(z)

n , r
(z)
n )} of the (marked) point-process

model {(S(z)
n ,R

(z)
n ), n, z ≥ 1} introduced in Section 3.1 is given which describes

the macro-scale component of the ZnO phase represented by the union of spheres
ξ = ⋃

n,z≥1 b(s
(z)
n , r

(z)
n ), we assume that the centers of gravity of clusters of outer

misspecifications can be described by an inhomogeneous Poisson process. Its
(conditional) intensity λ(x) at location x ∈ R

2 depends on the distance δξ (x) =
inf{|x − y| :y ∈ ξ} between x and the union of spheres ξ , where we put λ(x) = 0
if δξ (x) = 0.

The intensity λ(x) at locations x ∈ R
2 with δξ (x) > 0 can be estimated by

analyzing the centers of gravity of clusters of outer misspecifications in the set
B \ B ′′′ extracted from binarized ET images. In particular, for any dl, du > 0 with
dl < du, the (average) intensity λ[dl,du) of centers of gravity at locations x ∈ R

2

with δξ (x) ∈ [dl, du) can be estimated by

λ̂[dl,du) = number of centers of gravity with distance to B ′′′ between dl and du

number of voxels with distance to B ′′′ between dl and du

.

Examples of results for λ̂[dl,du) computed from ET images are given in Table 3. For
all three film thicknesses the estimated intensity λ̂[dl,di ) decreases with increasing
distance to the macro-scale component B ′′′ of the ZnO phase.

We assume that within shells around the set ξ = ⋃
n,z≥1 b(s

(z)
n , r

(z)
n ) with dis-

tance to ξ in the distance class [dl, du), the intensity of centers of gravity of outer
misspecifications is constant and given by λ[dl,du). We assume that the clusters of

TABLE 3
Model parameters for outer misspecifications

57 nm 100 nm 167 nm

Intensity λ[0,2) 1.78E−3 5.25E−3 5.70E−3
λ[2,4) 5.22E−4 4.31E−4 6.88E−4
λ[4,6) 1.81E−4 1.80E−4 4.48E−4
λ[6,8) 1.04E−4 1.10E−4 3.28E−4
λ[8,10) 6.90E−5 6.06E−5 2.31E−4

Slope α −0.90 −0.67 −1.13
Axis intercept β 86.45 33.62 30.92
Variance σ 2 1,889.5 114.6 63.9
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FIG. 11. Mean cluster sizes of outer misspecifications, depending on their distance from the set
B ′′′; a = 57 nm, b = 100 nm, c = 167 nm.

outer misspecifications are spheres, the radii of which are given in the following
way. It turned out that not only the intensity of centers of gravity, but also the clus-
ter sizes observed in binarized ET images, depend on the distances of centers of
gravity to the set B ′′′. In particular, the cluster sizes seem to have a tendency to de-
crease with increasing distance to the set B ′′′; see Figure 11, where the estimated
mean values for the radii of the considered distance classes are shown.

To integrate this dependency into our simulation model, we fit regression lines to
the point clouds shown in Figure 11, that is, we assume that the points in this figure
can be seen as realizations of random variables Yi satisfying the linear relation
Yi = αxi + β + εi , where xi = (d

(i)
l + d

(i)
u )/2 is the midpoint of the ith distance

class [d(i)
l , d

(i)
u ) and εi is a random error term. The parameters α and β of this

regression line are estimated by the method of least squares. As can be seen in
the plots of Figure 11, a linear model shows just the trend but is not a perfectly
fitting model for describing the cluster sizes in dependence on their distances to
the macro-scale component B ′′′ in the ZnO phase. Hence, we additionally consider
the residua εi in the linear regression model, where we assume that they follow
a normal distribution with expectation 0 and variance σ 2. The estimated values
obtained for slope α, intercept β of y-axis, and variance σ 2 of the residua are
given in Table 3. To ensure a positive size of each simulated cluster, we reject
negative sizes and generate new realizations as long as a positive cluster size is
sampled. For simulated clusters of outer misspecifications with a greater distance
from the set ξ than the intercept of the fitted regression line with the x-axis, we
put the cluster size equal to zero. This is in accordance with real data, because in
the binarized ET images such clusters of outer misspecifications do not occur. In
the following, by ξ ′ we will denote a realization of the model with included outer
misspecifications.

3.2.2. Boundary misspecifications. After adding the outer misspecifications to
our model as described in the previous section, we now develop an algorithm to
remove the so-called boundary misspecifications, which primarily result from the
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TABLE 4
Fractions of boundary misspecifications in consecutive shells (given in %)

57 nm 100 nm 167 nm

ET data Simulation ET data Simulation ET data Simulation

1st shell 87 72 60 67 60 64
2nd shell 74 70 0 0 0 0
3rd shell 71 68 0 0 0 0
4th shell 0 0 0 0 0 0

dilation of the ZnO domains; see Section 2.3. Recall that we defined the boundary
misspecifications as those misspecified voxels within some outer shells of the set
B ′′′, that is, the union of spheres representing the morphologically smoothed ZnO
phase. The first shell is defined as the set of voxels of B ′′′, with a distance to
W \ B ′′′ smaller or equal than 1. In general, the (i + 1)th shell, i = 1,2,3, . . . , is
defined as the set of voxels of B ′′′ with a distance to W \ B ′′′ in (i, i + 1].

Table 4 displays the percentage of misspecified boundary voxels in the different
outer shells of B ′′′. Note that boundary misspecifications only occur in the first
outer shell (for the 100 nm and 167 nm films) and in the first three outer shells
(for the 57 nm film), respectively. As a consequence, the simulation model should
remove about the same percentage of boundary voxels in the corresponding outer
shells of ξ .

Some parts of the outer shells of B ′′′ belong to thin branches of ZnO, therefore
not the complete shells of ξ have to be removed. To include such thin branches
into the model, we combine the model for the outer misspecifications introduced
in Section 3.2.1 with the following algorithm to remove the boundary misspecifi-
cations.

For a given realization ξ , we iteratively remove those parts of the outer shells of
ξ which are not connected to the set ξ ′ \ ξ introduced in the previous section. In
more detail, to correct the first outer shell, we first determine the set of all voxels
η ⊂ ξ belonging to the first outer shell. Subsequently, all voxels of the set η1 ⊂ η

that are not touching the set ξ ′ \ ξ , that is, whose distance to ξ ′ \ ξ is greater than 1,
are removed. Now, the first outer shell is corrected. Those parts η2 = η \ η1 of the
first outer shell that have not been removed since they were located near an outer
misspecification are—for technical reasons—added to the set ξ ′ \ ξ of simulated
outer misspecifications. Hence, when correcting the second outer shell, the voxels
near the set (ξ ′ \ ξ) ∪ η2 are not removed. This reproduces the thin branches as
observed in the binarized ET data. To correct the third shell, the same procedure is
repeated. The result after additionally adding the boundary misspecifications into
the model is denoted by ξ ′′.
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3.2.3. Interior misspecifications. As mentioned in Section 2.3, the remaining
misspecified voxels in B ′′′ are classified as interior misspecifications. These in-
terior misspecifications typically form small polymeric holes inside the ZnO do-
mains.

Our modeling approach for the interior misspecifications is based on the as-
sumption that the polymeric holes in the ZnO domains possess spherical shapes
and are not overlapping, that is, we consider them as hard spheres.

Similarly to the modeling of the outer misspecifications, we assume that the
centers of gravity of the interior misspecification clusters form a doubly stochastic
point process, where again the cluster sizes are considered as marks. We assume
the points of this point process to have a certain minimum distance rh to each
other because the interior misspecifications are seen as nonoverlapping spheres.
In particular, given the realization ξ ′′, that is, a realization of the marked point
process for the macro-scale component of the ZnO phase introduced in Section 3.1
with included outer and boundary misspecifications as described in Sections 3.2.1
and 3.2.2, the centers of gravity of interior misspecification clusters are assumed
to form a (conditional) Matérn hard-core process in ξ ∩ ξ ′′. We assume that the
marks of this point process are spheres with a constant radius r = rh

2 , that is, the
interior misspecifications are modeled by nonoverlapping spheres with equal radii.

The Matérn hard-core process in R
3 with intensity λh and hard-core radius rh

is a thinned homogeneous Poisson point process, where the remaining points have
a distance of at least rh to each other. Further details can be found, for example, in
Illian et al. (2008). Given the set ξ ∩ ξ ′′, the centers of gravity of interior misspec-
ifications are then modeled by those points of the Matérn hard-core process which
belong to ξ ∩ ξ ′′. Hence, this model for the interior misspecifications can be called
a doubly stochastic Matérn hard-core process.

To fit this model to real data, we first estimate the mean volume V of the clus-
ters for all three film thicknesses and transform this (mean) volume into a radius r̂

of a ball with the same volume V . The corresponding radii obtained for the three
considered data sets can be seen in Table 5. The hard-core radius r̂h of the Matérn
hard-core process is then computed as r̂h = 2r̂ , which ensures that the spheres
of radius r̂ centered at the points of the doubly stochastic Matérn hard-core pro-
cess are not overlapping. For the intensity λh of the Matérn hard-core process we

TABLE 5
Estimated parameters for interior misspecifications

Parameter 57 nm film 100 nm film 167 nm film

Radius r 2.50 1.30 1.07
Intensity λh 1.37E−3 5.17E−3 5.12E−3
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FIG. 12. Left: 2D slice of 57 nm film, center: corresponding representation by a union of spheres,
right: simulated correction using the model for the misspecified voxels applied to the representation
by a union of spheres.

consider the following natural estimator,

λ̂h = number of disjoint clusters of interior misspecifications

|B ′′ � b(o, r)| ,

where |B ′′ � b(o, r)| denotes the volume of the set B ′′ � b(o, r). The values of
λ̂h obtained for the three data sets are shown in Table 5. From the results given
in Table 5 it can be seen that, also with respect to interior misspecifications, the
57 nm film behaves rather different than the 100 nm, and 167 nm films: in the
first case, there are fewer, but larger clusters of interior misspecifications than in
the latter case. In the following, by ξ ′′′ we denote a realization of our simulation
model after including all three types of misspecifications.

Figure 12 shows a realization of the model for the micro-structure, where the
micro-structure model is applied to the real data, more precisely, the representation
by a union of spheres B ′′′ of the 57 nm film. The two images on the left and the
right sides of Figure 12 possess a high degree of visual resemblance. See also
Section 4 for a more formal approach to model validation.

4. Model validation. To evaluate the goodness of fit, we compare model char-
acteristics which have been computed from real and simulated data, respectively.
On the one hand, we consider structural characteristics of the ZnO nanomorphol-
ogy like the volume fraction of ZnO, the volume fraction of ZnO contributing to
monotonous percolation pathways, and the distribution of spherical contact dis-
tances from polymer to ZnO. On the other hand, we consider a physical character-
istic, the so-called exciton quenching probability. This characteristic describes the
probability that a photo-excited particle generates charges. These characteristics
have also been used in Oosterhout et al. (2009) to characterize the morphology of
a photoactive layer, since they are closely related to the performance of solar cells.
To compare the values of these characteristics, obtained from simulated and real
data, we binarize the ET images using two extreme global thresholds as suggested
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FIG. 13. 3D cutouts (400 × 400 × 37 voxels) of binarized ET images obtained by adaptive thresh-
olding (1st row) and realizations of the complete model (2nd row); left: 57 nm film, center: 100 nm
film, right: 167 nm film.

in Oosterhout et al. (2009). Recall that the two global thresholds have been chosen
in such a way that the ZnO phase can be assumed to be a subset of the union of
foreground voxels (high threshold) and, vice versa, the polymer phase is contained
in the union of background voxels (low threshold).

It turns out that the estimated values obtained for most of the considered image
characteristics of these two binarizations can be seen as lower and upper bounds,
respectively, for corresponding values obtained for simulated images. In addition
to this, we mention that, in accordance with the visual resemblance of images ob-
tained from real and simulated data for the macro-scale component (see Figure 10)
and the micro-scale component (see Figure 12) of the ZnO nanomorphology, the
optical resemblance between binarized ET images obtained by adaptive thresh-
olding and realizations of the complete simulation model is also quite well; see
Figure 13.

4.1. Checking morphological characteristics. For a quantitative validation of
the stochastic simulation model, we first consider structural characteristics of
the ZnO nanomorphology. For this purpose, we generate 100 realizations of our
model, estimate the considered characteristics for each of these realizations and
compute their mean values. In the case of the spherical contact distance distribu-
tion function, the pointwise means are considered.
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TABLE 6
Volume fractions of ZnO for globally thresholded and simulated images

Volume fraction
Volume fraction Volume fraction with monotonous

of ZnO with connection connection

57 nm Low threshold 0.098 0.934 0.872
Simulated data 0.112 0.905 0.864
High threshold 0.172 0.974 0.947

100 nm Low threshold 0.133 0.890 0.673
Simulated data 0.215 0.971 0.910
High threshold 0.295 0.991 0.936

167 nm Low threshold 0.128 0.851 0.630
Simulated data 0.210 0.943 0.806
High threshold 0.293 0.979 0.907

First, the volume fraction of ZnO is considered, which is one of the most im-
portant characteristics in structural modeling. The results given in Table 6 show
that for all three film thicknesses, the volume fractions of ZnO computed from
simulated data are between the corresponding bounds obtained from the globally
thresholded ET images.

In the next step, the connectivity of the ZnO phase is considered. This also is
an important characteristic, because only if there is a high connectivity, that is,
if many percolation pathways exist, the produced charges can be transported to
the electrodes, where current can be gripped. For estimating the connected and
monotonously connected volume fractions of ZnO we applied the same methods
as in Oosterhout et al. (2009). However, in general, the (conditional) connected
and monotonously connected volume fractions of the foreground phase in globally
thresholded images do not monotonously depend on the values of global thresh-
olds. But as shown in Figure 14, this is the case for the globally thresholded ET
data of photoactive layers of polymer-ZnO solar cells. Hence, also with respect to
connected volume fractions, the values for the two extreme thresholds can be seen
as upper and lower bounds. With the exception of the 57 nm film, the values for
the connected volume fractions computed from simulated data, given in Table 6,
are nicely between the corresponding values obtained from globally thresholded
ET images. Also, the relative errors between the values obtained for the adaptively
thresholded ET images and simulated images are rather small; see Table 7.

Finally, the spherical contact distribution function F SCD : [0,∞) → [0,1] of
the ZnO phase is considered, where F SCD(t) can be interpreted as a conditional
probability that the minimum distance from a randomly chosen location to the ZnO
phase is smaller or equal than t ≥ 0, provided that the considered location belongs
to the polymer phase.
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FIG. 14. Volume fractions of connected (solid lines) and monotonously connected (dashed lines)
foreground phase, in dependence of the global threshold; a = 57 nm, b = 100 nm, c = 167 nm.

Similarly to the situation which we observed for the connected volume fractions
considered above, it turns out that the spherical contact distribution functions of the
foreground phase in globally thresholded ET images depend monotonously on the
value of the global threshold. Hence, the estimated contact distribution functions
F̂ SCD

l and F̂ SCD
u obtained for the two extreme thresholds can be seen as upper

and lower bounds, respectively; see Figure 15. In addition to this, the spherical
contact distribution F̂ SCD obtained from simulated data is shown in Figure 15,
where F̂ SCD

l (t) ≤ F̂ SCD(t) ≤ F̂ SCD
u (t) for all considered t ≥ 0 and for all three

layer thicknesses.
In summary, we can conclude that our model fits very well to real data regard-

ing the considered structural characteristics. As the model has been developed for
analyzing the influence of morphology on the performance of solar cells, we also

TABLE 7
Volume fractions of ZnO for adaptively thresholded and simulated images

Volume fraction
Volume fraction Volume fraction with monotonous

of ZnO with connection connection

57 nm Adaptive threshold 0.133 0.963 0.928
Simulated data 0.112 0.905 0.864
Relative error −0.158 −0.060 −0.069

100 nm Adaptive threshold 0.211 0.980 0.888
Simulated data 0.215 0.971 0.910
Relative error 0.019 −0.009 0.025

167 nm Adaptive threshold 0.209 0.970 0.851
Simulated data 0.210 0.943 0.806
Relative error 0.005 −0.028 −0.053
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FIG. 15. Spherical contact distribution functions. The lower and upper bounds F̂ SCD
l and F̂ SCD

u

obtained from globally thresholded ET images are plotted as dashed lines, the corresponding results
from simulated image data as solid lines; a = 57 nm, b = 100 nm, c = 167 nm.

consider a physical characteristic for model validation which is described in the
following section.

4.2. Checking probabilities of exciton quenching. Quenching efficiency ηQ

is the probability of a random exciton being quenched; see Section 2.1. It is an
elementary but important physical characteristic for the efficiency of solar cells.

In a hybrid polymer-ZnO solar cell, absorption of light by the polymer phase
does not directly yield free charge carriers. Instead excitons are formed. It is only
at the interface of the polymer and ZnO phase that free charges are generated
by quenching (splitting) of excitons. It is therefore of the utmost importance that
excitons are able to reach this interface. The exciton diffusion length in conjugated
polymers is typically a few nanometers, which puts a considerable constraint on
the morphology of polymer solar cells. In other words, the efficiency of exciton
quenching is very sensitive to morphology, making it a suitable way to validate
our model.

Suppose that the polymer phase Bc = W \ B is given in a cubic sampling win-
dow W ⊂ R

3. Then, the overall efficiency ηQ of exciton quenching can be obtained
from the field {n(x), x ∈ Bc} of local exciton densities in the polymer phase. The
exciton density field {n(x), x ∈ Bc} can be computed by solving the steady-state
diffusion equation [see Oosterhout et al. (2009)]

0 = dn(x)

dt
= −n(x)

τ
+ D∇2n(x) + g, x ∈ Bc,

where D is the diffusion constant, τ is the exciton life time, and g is the rate of
exciton generation. As a boundary condition we require that all excitons at the
polymer-ZnO interface be quenched, that is, n(x) = 0 for all x ∈ ∂Bc \ ∂W . For
x ∈ ∂Bc ∩ ∂W , cyclic boundary conditions are applied in all directions. The ex-
citon lifetime and exciton diffusion rate in P3HT are taken from the literature:
τ = 400 ps and D = 1.8 · 10−7 m2 s−1; see Shaw, Ruseckas and Samuel (2008).
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FIG. 16. The local exciton density n(x) normalized to τg for adaptively thresholded ET (left) and
simulated (right) data. The scalebar, specifying the density of excitons, applies to both images.

The rate of exciton generation g is just a scaling factor, where we use a value of
g = 1027 m−3 s−1 which is typical for 1-sun conditions.

The diffusion equation is solved numerically to a relative error of less than 10−3.
Figure 16 shows local exciton density fields {n(x), x ∈ Bc} for adaptively thresh-
olded and simulated data, respectively.

Once {n(x), x ∈ Bc} is known, the quenching efficiency ηQ follows from ηQ =
1 − n̄/(τg), where n̄ is the average exciton density in the polymer domain Bc.
Figure 17 compares the quenching efficiencies for original and simulated data.
The quenching efficiency is also monotonously depending on the global threshold.
Hence, the values of ηQ obtained for the two extreme thresholds can be seen as
lower and upper bounds. The values of the quenching efficiency for the simulated
data lie well within these lower and upper bounds; see Figure 17. The small relative
errors displayed in Table 8 show that our model fits very well to real data, where
quenching efficiencies of adaptively thresholded ET images are compared with
those of simulated data.

FIG. 17. Quenching efficiencies for globally thresholded and simulated images.
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TABLE 8
Quenching efficiencies for adaptively thresholded and simulated images

57 nm film 100 nm film 167 nm film

Adaptive threshold 0.418 0.794 0.819
Simulated data 0.416 0.805 0.834
Relative error −0.010 0.014 0.018

5. Conclusions and outlook. In the present paper we developed a parame-
terized stochastic simulation model for the nanostructure of photoactive layers of
hybrid polymer-ZnO solar cells. The model is based on tools from stochastic ge-
ometry. Additional to the model itself, we developed a method to fit its parameters
to real 3D ET image data.

To establish our model, the adaptively thresholded ET images are segmented
using a stochastic algorithm which consists of two main steps. First, the images
are morphologically smoothed in order to slightly decrease their structural com-
plexity. Then, the morphologically smoothed binary images are represented by a
system of overlapping spheres, which can be interpreted as a realization of a 3D
marked point process, where the sphere centers are the locations of points and the
corresponding radii are their marks. For the stochastic simulation model, we use
a correlated vector of 2D elliptical Matérn cluster processes, where the points are
subsequently marked to create a 3D marked point process. To complete the model,
that is, to include the structural details which were omitted due to the morpholog-
ical smoothing, a stochastic simulation model for this “micro-scale” component is
developed afterward.

As our stochastic simulation model is fully parameterized, we also developed
techniques for the estimation of the model parameters of all model components.
Thus, we are able to fit the simulation model to the ET image data described in
Section 2.2.

Finally, we validated the simulation model by comparing structural and phys-
ical characteristics computed from simulated image data with the corresponding
characteristics obtained from globally and adaptively thresholded ET images, re-
spectively. In particular, the quenching efficiencies computed for realizations of
the simulation model agree very well with those of the ET images. Hence, our
model nicely reflects the diffusion of excitons.

Since we were able to fit our model to 3D ET data, it has already proved its capa-
bility to represent realistic nanostructures of photoactive layers of hybrid polymer-
ZnO solar cells. The fact that the model is parameter-based enables us to predict
morphologies for film thicknesses, which have not (yet) been imaged by 3D ET,
by interpolating or extrapolating the fitted model parameters. Due to a strong cor-
relation between morphology and efficiency of polymer solar cells [see Oosterhout
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et al. (2009)], the developed simulation model is of significant importance for fur-
ther investigations of polymer solar cells. In a forthcoming paper we will also
investigate the transport processes of charges to the electrodes as described in
Koster (2010), additional to the structural and physical characteristics considered
in the present paper. By generating virtual morphologies, which are generated as
realizations of the developed model with different parameter configurations, and
investigating the transport processes of electrons and excitons therein, the spatial
stochastic model will be used to identify morphologies of improved efficiency with
respect to the considered physical characteristics.

We also remark that the modeling approach developed in the present paper can
be applied to various other kinds of image data, including geographical data con-
sidered, for example, in ecology. Then, for instance, the Markov chain of Matérn
cluster processes introduced in Section 3.1.2 may be viewed as a sequence of de-
pendent 2D point processes through time, which can model, for example, the tem-
poral movements of species in a given region.
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