134 research outputs found

    Global transcriptional responses of fission and budding yeast to changes in copper and iron levels: a comparative study

    Get PDF
    Analysis of genome-wide responses to changing copper and iron levels in budding and fission yeast reveals conservation of only a small core set of genes and remarkable differences in the responses of the two yeasts to excess copper

    The draft genome and transcriptome of Cannabis sativa

    Get PDF
    Background: Cannabis sativa has been cultivated throughout human history as a source of fiber, oil and food, and for its medicinal and intoxicating properties. Selective breeding has produced cannabis plants for specific uses, including high-potency marijuana strains and hemp cultivars for fiber and seed production. The molecular biology underlying cannabinoid biosynthesis and other traits of interest is largely unexplored. Results: We sequenced genomic DNA and RNA from the marijuana strain Purple Kush using shortread approaches. We report a draft haploid genome sequence of 534 Mb and a transcriptome of 30,000 genes. Comparison of the transcriptome of Purple Kush with that of the hemp cultivar 'Finola' revealed that many genes encoding proteins involved in cannabinoid and precursor pathways are more highly expressed in Purple Kush than in 'Finola'. The exclusive occurrence of \u3949-tetrahydrocannabinolic acid synthase in the Purple Kush transcriptome, and its replacement by cannabidiolic acid synthase in 'Finola', may explain why the psychoactive cannabinoid \u3949-tetrahydrocannabinol (THC) is produced in marijuana but not in hemp. Resequencing the hemp cultivars 'Finola' and 'USO-31' showed little difference in gene copy numbers of cannabinoid pathway enzymes. However, single nucleotide variant analysis uncovered a relatively high level of variation among four cannabis types, and supported a separation of marijuana and hemp. Conclusions: The availability of the Cannabis sativa genome enables the study of a multifunctional plant that occupies a unique role in human culture. Its availability will aid the development of therapeutic marijuana strains with tailored cannabinoid profiles and provide a basis for the breeding of hemp with improved agronomic characteristics.Peer reviewed: YesNRC publication: Ye

    Analysis of Escherichia coli RNase E and RNase III activity in vivo using tiling microarrays

    Get PDF
    Tiling microarrays have proven to be a valuable tool for gaining insights into the transcriptomes of microbial organisms grown under various nutritional or stress conditions. Here, we describe the use of such an array, constructed at the level of 20ā€‰nt resolution for the Escherichia coli MG1655 genome, to observe genome-wide changes in the steady-state RNA levels in mutants defective in either RNase E or RNase III. The array data were validated by comparison to previously published results for a variety of specific transcripts as well as independent northern analysis of additional mRNAs and sRNAs. In the absence of RNase E, 60% of the annotated coding sequences showed either increases or decreases in their steady-state levels. In contrast, only 12% of the coding sequences were affected in the absence of RNase III. Unexpectedly, many coding sequences showed decreased abundance in the RNase E mutant, while more than half of the annotated sRNAs showed changes in abundance. Furthermore, the steady-state levels of many transcripts showed overlapping effects of both ribonucleases. Data are also presented demonstrating how the arrays were used to identify potential new genes, RNase III cleavage sites and the direct or indirect control of specific biological pathways

    Characterization of the human ESC transcriptome by hybrid sequencing

    Get PDF
    Although transcriptional and posttranscriptional events are detected in RNA-Seq data from second-generation sequencing, fulllength mRNA isoforms are not captured. On the other hand, thirdgeneration sequencing, which yields much longer reads, has current limitations of lower raw accuracy and throughput. Here, we combine second-generation sequencing and third-generation sequencing with a custom-designed method for isoform identification and quantification to generate a high-confidence isoform dataset for human embryonic stem cells (hESCs). We report 8,084 RefSeq-annotated isoforms detected as full-length and an additional 5,459 isoforms predicted through statistical inference. Over one-third of these are novel isoforms, including 273 RNAs from gene loci that have not previously been identified. Further characterization of the novel loci indicates that a subset is expressed in pluripotent cells but not in diverse fetal and adult tissues; moreover, their reduced expression perturbs the network of pluripotency- associated genes. Results suggest that gene identification, even in well-characterized human cell lines and tissues, is likely far from complete

    Global analysis of SUMO chain function reveals multiple roles in chromatin regulation.

    Get PDF
    Like ubiquitin, the small ubiquitin-related modifier (SUMO) proteins can form oligomeric chains, but the biological functions of these superstructures are not well understood. Here, we created mutant yeast strains unable to synthesize SUMO chains (smt3(allR)) and subjected them to high-content microscopic screening, synthetic genetic array (SGA) analysis, and high-density transcript profiling to perform the first global analysis of SUMO chain function. This comprehensive assessment identified 144 proteins with altered localization or intensity in smt3(allR) cells, 149 synthetic genetic interactions, and 225 mRNA transcripts (primarily consisting of stress- and nutrient-response genes) that displayed a \u3e1.5-fold increase in expression levels. This information-rich resource strongly implicates SUMO chains in the regulation of chromatin. Indeed, using several different approaches, we demonstrate that SUMO chains are required for the maintenance of normal higher-order chromatin structure and transcriptional repression of environmental stress response genes in budding yeast

    Improved genome-wide localization by ChIP-chip using double-round T7 RNA polymerase-based amplification

    Get PDF
    Chromatin immunoprecipitation combined with DNA microarrays (ChIP-chip) is a powerful technique to detect in vivo proteinā€“DNA interactions. Due to low yields, ChIP assays of transcription factors generally require amplification of immunoprecipitated genomic DNA. Here, we present an adapted linear amplification method that involves two rounds of T7 RNA polymerase amplification (double-T7). Using this we could successfully amplify as little as 0.4 ng of ChIP DNA to sufficient amounts for microarray analysis. In addition, we compared the double-T7 method to the ligation-mediated polymerase chain reaction (LM-PCR) method in a ChIP-chip of the yeast transcription factor Gsm1p. The double-T7 protocol showed lower noise levels and stronger binding signals compared to LM-PCR. Both LM-PCR and double-T7 identified strongly bound genomic regions, but the double-T7 method increased sensitivity and specificity to allow detection of weaker binding sites

    Highly Pathogenic Avian Influenza A(H5N1) Virus Outbreak in New England Seals, United States

    Get PDF
    We report the spillover of highly pathogenic avian influenza A(H5N1) into marine mammals in the northeastern United States, coincident with H5N1 in sympatric wild birds. Our data indicate monitoring both wild coastal birds and marine mammals will be critical to determine pandemic potential of influenza A viruses

    Avian Influenza Viruses in Wild Birds: Virus Evolution in a Multihost Ecosystem.

    Get PDF
    Wild ducks and gulls are the major reservoirs for avian influenza A viruses (AIVs). The mechanisms that drive AIV evolution are complex at sites where various duck and gull species from multiple flyways breed, winter, or stage. The Republic of Georgia is located at the intersection of three migratory flyways: the Central Asian flyway, the East Africa/West Asia flyway, and the Black Sea/Mediterranean flyway. For six complete study years (2010 to 2016), we collected AIV samples from various duck and gull species that breed, migrate, and overwinter in Georgia. We found a substantial subtype diversity of viruses that varied in prevalence from year to year. Low-pathogenic AIV (LPAIV) subtypes included H1N1, H2N3, H2N5, H2N7, H3N8, H4N2, H6N2, H7N3, H7N7, H9N1, H9N3, H10N4, H10N7, H11N1, H13N2, H13N6, H13N8, and H16N3, and two highly pathogenic AIVs (HPAIVs) belonging to clade 2.3.4.4, H5N5 and H5N8, were found. Whole-genome phylogenetic trees showed significant host species lineage restriction for nearly all gene segments and significant differences in observed reassortment rates, as defined by quantification of phylogenetic incongruence, and in nucleotide sequence diversity for LPAIVs among different host species. Hemagglutinin clade 2.3.4.4 H5N8 viruses, which circulated in Eurasia during 2014 and 2015, did not reassort, but analysis after their subsequent dissemination during 2016 and 2017 revealed reassortment in all gene segments except NP and NS. Some virus lineages appeared to be unrelated to AIVs in wild bird populations in other regions, with maintenance of local AIVs in Georgia, whereas other lineages showed considerable genetic interrelationships with viruses circulating in other parts of Eurasia and Africa, despite relative undersampling in the area.IMPORTANCE Waterbirds (e.g., gulls and ducks) are natural reservoirs of avian influenza viruses (AIVs) and have been shown to mediate the dispersal of AIVs at intercontinental scales during seasonal migration. The segmented genome of influenza viruses enables viral RNA from different lineages to mix or reassort when two viruses infect the same host. Such reassortant viruses have been identified in most major human influenza pandemics and several poultry outbreaks. Despite their importance, we have only recently begun to understand AIV evolution and reassortment in their natural host reservoirs. This comprehensive study illustrates AIV evolutionary dynamics within a multihost ecosystem at a stopover site where three major migratory flyways intersect. Our analysis of this ecosystem over a 6-year period provides a snapshot of how these viruses are linked to global AIV populations. Understanding the evolution of AIVs in the natural host is imperative to mitigating both the risk of incursion into domestic poultry and the potential risk to mammalian hosts, including humans

    Whole-genome sequencing identifies emergence of a quinolone resistance mutation in a case of Stenotrophomonas maltophilia bacteremia

    Get PDF
    Whole-genome sequences for Stenotrophomonas maltophilia serial isolates from a bacteremic patient before and after development of levofloxacin resistance were assembled de novo and differed by one single-nucleotide variant in smeT, a repressor for multidrug efflux operon smeDEF. Along with sequenced isolates from five contemporaneous cases, they displayed considerable diversity compared against all published complete genomes. Whole-genome sequencing and complete assembly can conclusively identify resistance mechanisms emerging in S. maltophilia strains during clinical therapy
    • ā€¦
    corecore