1,055 research outputs found

    Bipotent mammary stem cells: now in amazing 3D

    Get PDF
    For many decades, developmental biologists and cancer researchers alike have been trying to understand the relationship between the basal and luminal cell compartments in the mouse mammary epithelium. Delineating the mammary stem and progenitor cell hierarchy will provide fundamental knowledge of how cell proliferation and differentiation are orchestrated to build, maintain and regenerate a complex mammalian tissue. Moreover, it is expected to offer insight into the cells of origin for human breast cancer. A new lineage-tracing study has fuelled the discussion as to the existence of bipotent stem cells in the basal layer of the mouse mammary epithelium

    Structural information on the light-harvesting complex II of green plants that can be depichered from polarized absorption characteristics.

    Get PDF
    The atomic model of light-harvesting complex II of green plants (LHCII) reveals a densely packed arrangement of 12 chlorophylls and two carotenoids. At the current resolution of 3.4 Angstrom chlorophylls can only be modeled as ''naked'' tetrapyrrole rings. Consequently, definitive assignments of the identities of the chlorophylls (chlorophyll a or chlorophyll b) and the directions of the transition dipole moments are obstructed. These uncertainties lead to a large number of possible configurations, and a detailed understanding of the structure-function relationship is obscured. It is demonstrated that a large reduction in the number of possible configurations and a considerable amount of additional structural information can be obtained by deciphering global features of the polarized absorption spectra within the context of exciton calculations. It is shown that only a limited number of configurations are able to explain the global features of the linear and circular dichroism spectra of LHCII. Assuming that the preliminary assignment of the identities of the 12 chlorophylls by Kuhlbrandt and co-workers is correct, it is possible to deduce the most likely orientations for most of the chlorophylls. The information presented in this study on the most likely orientations will be important for a detailed understanding of the relation between the structure and spectroscopy

    Spectral broadening of interacting pigments: Polarized absorption by photosynthetic proteins.

    Get PDF
    Excitonic interaction between pigment molecules is largely responsible for the static and dynamic spectroscopic properties of photosynthetic pigment-proteins. This paper provides a new description of its effect on polarized absorption spectroscopy, in particular on circular dichroism (CD). We investigate excitonic spectra of finite width and use "spectral moments" to compare 1) inhomogeneously broadened excitonic spectra, 2) spectra that are (homogeneously broadened by vibrations or electron-phonon interaction, and 3) spectra that are simulated by applying convolution after the interaction has been evaluated. Two cases are distinguished. If the excitonic splitting is smaller than the width of the interacting absorption bands, the broadening of the excitonic spectrum can be approximated by a convolution approach, although a correction is necessary for CD spectra. If the excitonic splitting exceeds the bandwidth, the well-known exchange narrowing occurs. We demonstrate that this is accompanied by redistribution of dipole strength and spectral shifts. The magnitude of a CD spectrum is conveniently expressed by its first spectral moment. As will be shown, this is independent of spectral broadening as well as dispersive shifts induced by pigment-protein interactions. Consequently, it provides a simple tool to relate the experimental CD spectrum of a pigment complex to the excitonic interactions from which it originates. To illustrate the potential of the presented framework, the spectroscopy of the LH2 pigment-protein complex from purple bacteria is analyzed and compared for dimer-like and ring-like structures. Furthermore, it is demonstrated that the variability of the CD of chlorosomes from green bacteria can be explained by small changes in the structure of their cylindrical bacteriochlorophyll c subunits

    Cold trapped atoms detected with evanescent waves

    Full text link
    We demonstrate the in situ detection of cold 87 Rb atoms near a dielectric surface using the absorption of a weak, resonant evanescent wave. We have used this technique in time of flight experiments determining the density of atoms falling on the surface. A quantitative understanding of the measured curve was obtained using a detailed calculation of the evanescent intensity distribution. We have also used it to detect atoms trapped near the surface in a standing-wave optical dipole potential. This trap was loaded by inelastic bouncing on a strong, repulsive evanescent potential. We estimate that we trap 1.5 x 10 4 atoms at a density 100 times higher than the falling atoms.Comment: 5 pages, 3 figure

    Molecular Mechanics Simulations and Improved Tight-binding Hamiltonians for Artificial Light Harvesting Systems: Predicting Geometric Distributions, Disorder, and Spectroscopy of Chromophores in a Protein Environment

    Get PDF
    We present molecular mechanics {and spectroscopic} calculations on prototype artificial light harvesting systems consisting of chromophores attached to a tobacco mosaic virus (TMV) protein scaffold. These systems have been synthesized and characterized spectroscopically, but information about the microscopic configurations and geometry of these TMV-templated chromophore assemblies is largely unknown. We use a Monte Carlo conformational search algorithm to determine the preferred positions and orientations of two chromophores, Coumarin 343 together with its linker, and Oregon Green 488, when these are attached at two different sites (104 and 123) on the TMV protein. The resulting geometric information shows that the extent of disorder and aggregation properties, and therefore the optical properties of the TMV-templated chromophore assembly, are highly dependent on the choice of chromophores and protein site to which they are bound. We used the results of the conformational search as geometric parameters together with an improved tight-binding Hamiltonian to simulate the linear absorption spectra and compare with experimental spectral measurements. The ideal dipole approximation to the Hamiltonian is not valid since the distance between chromophores can be very small. We found that using the geometries from the conformational search is necessary to reproduce the features of the experimental spectral peaks

    Picosecond fluorescence of intact and dissolved PSI-LHCI crystals

    Get PDF
    Over the last years many crystal structures of photosynthetic pigment-protein complexes have been determined, and used extensively to model spectroscopic results obtained on the same proteins in solution. However, the crystal structure is not necessarily identical to the structure of the protein in solution. Here we studied picosecond fluorescence of Photosystem I-Light Harvesting Complex I (PSI-LHCI), a multisubunit pigment protein complex that catalyzes the first steps of photosynthesis. The ultrafast fluorescence of PSI-LHCI crystals is identical to that of dissolved crystals, but differs considerably from most kinetics presented in literature. In contrast to most studies, the present data can be modeled quantitatively with only 2 compartments: PSI core and LHCI. This yields the rate of charge separation from an equilibrated core (22.5+/-2.5 ps) and rates of excitation energy transfer from LHCI to core (kLC) and vice versa (kCL). The ratio R=kCL/kLC between these rates appears to be wavelength-dependent and scales with the ratio of the absorption spectra of LHCI and core, indicating the validity of a detailed balance relation between both compartments. kLC depends slightly but non systematically on detection wavelength, averaging (9.4+/-4.9 ps)(-1). R ranges from 0.5 (below 690 nm) to around 1.3 above 720 nm

    The role of the individual Lhca’s in Photosystem I excitation energy trapping

    Get PDF
    In this work, we have investigated the role of the individual antenna complexes and of the low-energy forms in excitation energy transfer and trapping in Photosystem I of higher plants. To this aim, a series of Photosystem I (sub)complexes with different antenna size/composition/absorption have been studied by picosecond fluorescence spectroscopy. The data show that Lhca3 and Lhca4, which harbor the most red forms, have similar emission spectra (λmax = 715–720 nm) and transfer excitation energy to the core with a relative slow rate of ~25/ns. Differently, the energy transfer from Lhca1 and Lhca2, the ‘‘blue’’ antenna complexes, occurs about four times faster. In contrast to what is often assumed, it is shown that energy transfer from the Lhca1/4 and the Lhca2/3 dimer to the core occurs on a faster timescale than energy equilibration within these dimers. Furthermore, it is shown that all four monomers contribute almost equally to the transfer to the core and that the red forms slow down the overall trapping rate by about two times. Combining all the data allows the construction of a comprehensive picture of the excitation-energy transfer routes and rates in Photosystem I.
    • …
    corecore