8,996 research outputs found
Light Transmission Through Metallic-Mean Quasiperiodic Stacks with Oblique Incidence
The propagation of s- and p-polarized light through quasiperiodic
multilayers, consisting of layers with different refractive indices, is studied
by the transfer matrix method. In particular, we focus on the transmission
coefficient of the systems in dependency on the incidence angle and on the
ratio of the refractive indices. We obtain additional bands with almost
complete transmission in the quasiperiodic systems at frequencies in the range
of the photonic band gap of a system with a periodic alignment of the two
materials for both types of light polarization. With increasing incidence angle
these bands bend towards higher frequencies, where the curvature of the
transmission bands in the quasiperiodic stack depends on the metallic mean of
the construction rule. Additionally, in the quasiperiodic systems for
p-polarized light the bands show almost complete transmission near the
Brewster's angle in contrast to the results for s-polarized light. Further, we
present results for the influence of the refractive indices at the midgap
frequency of the periodic stack, where the quasiperiodicity was found to be
most effective.Comment: 10 pages, 7 figure
Nonlinear denoising of transient signals with application to event related potentials
We present a new wavelet based method for the denoising of {\it event related
potentials} ERPs), employing techniques recently developed for the paradigm of
deterministic chaotic systems. The denoising scheme has been constructed to be
appropriate for short and transient time sequences using circular state space
embedding. Its effectiveness was successfully tested on simulated signals as
well as on ERPs recorded from within a human brain. The method enables the
study of individual ERPs against strong ongoing brain electrical activity.Comment: 16 pages, Postscript, 6 figures, Physica D in pres
Impact of Sodium Layer variations on the performance of the E-ELT MCAO module
Multi-Conjugate Adaptive Optics systems based on sodium Laser Guide Stars may
exploit Natural Guide Stars to solve intrinsic limitations of artificial
beacons (tip-tilt indetermination and anisoplanatism) and to mitigate the
impact of the sodium layer structure and variability. The sodium layer may also
have transverse structures leading to differential effects among Laser Guide
Stars. Starting from the analysis of the input perturbations related to the
Sodium Layer variability, modeled directly on measured sodium layer profiles,
we analyze, through a simplified end-to-end simulation code, the impact of the
low/medium orders induced on global performance of the European Extremely Large
Telescope Multi-Conjugate Adaptive Optics module MAORY.Comment: 7 pages, 5 figures, SPIE conference Proceedin
The influence of self-citation corrections on Egghe's g index
The g index was introduced by Leo Egghe as an improvement of Hirsch's index h
for measuring the overall citation record of a set of articles. It better takes
into account the highly skewed frequency distribution of citations than the h
index. I propose to sharpen this g index by excluding the self-citations. I
have worked out nine practical cases in physics and compare the h and g values
with and without self-citations. As expected, the g index characterizes the
data set better than the h index. The influence of the self-citations appears
to be more significant for the g index than for the h index.Comment: 9 pages, 2 figures, submitted to Scientometric
Thickness dependence of linear and quadratic magneto-optical Kerr effect in ultrathin Fe(001) films
Magneto-optical Kerr effect (MOKE) magnetometry is one of the most widely
employed techniques for the characterization of ferromagnetic thin-film
samples. Some information, such as coercive fields or anisotropy strengths can
be obtained without any knowledge of the optical and magneto-optical (MO)
properties of the material. On the other hand, a quantitative analysis, which
requires a precise knowledge of the material's index of refraction n and the MO
coupling constants K and G is often desirable, for instance for the comparison
of samples, which are different with respect to ferromagnetic layer
thicknesses, substrates, or capping layers. While the values of the parameters
n and the linear MO coupling parameter K reported by different authors usually
vary considerably, the relevant quadratic MO coupling parameters G of Fe are
completely unknown. Here, we report on measurements of the thickness dependence
(0-60nm) of the linear and quadratic MOKE in epitaxial bcc-Fe(001) wedge-type
samples performed at a commonly used laser wavelength of 670nm. By fitting the
thickness dependence we are able to extract a complete set of parameters n, K,
(G11 - G12), and G44 for the quantitative description of the MOKE of
bcc-Fe(001). We find sizable different n, K, and G parameters for films thinner
than about 10nm as compared to thicker films, which is indicative of a
thickness dependence of the electronic properties or of surface contributions
to the MOKE. The effect size of the quadratic MOKE is found to be about a third
of the record values recently reported for Co2FeSi.Comment: 8 pages, 5 figure
A reparametrization invariant surface ordering
We introduce a notion of a non-Abelian loop gauge field defined on points in
loop space. For this purpose we first find an infinite-dimensional tensor
product representation of the Lie algebra which is particularly suited for
fields on loop space. We define the non-Abelian Wilson surface as a `time'
ordered exponential in terms of this loop gauge field and show that it is
reparametrization invariant.Comment: 11 pages, clarifications and added ref
Divergence Measure Between Chaotic Attractors
We propose a measure of divergence of probability distributions for
quantifying the dissimilarity of two chaotic attractors. This measure is
defined in terms of a generalized entropy. We illustrate our procedure by
considering the effect of additive noise in the well known H\'enon attractor.
Comparison of two H\'enon attractors for slighly different parameter values,
has shown that the divergence has complex scaling structure. Finally, we show
how our approach allows to detect non-stationary events in a time series.Comment: 9 pages, 6 figure
Ultrasensitive 3He magnetometer for measurements of high magnetic fields
We describe a 3He magnetometer capable to measure high magnetic fields (B >
0.1 Tesla) with a relative accuracy of better than 10^-12. Our approach is
based on the measurement of the free induction decay of gaseous, nuclear spin
polarized 3He following a resonant radio frequency pulse excitation. The
measurement sensitivity can be attributed to the long coherent spin precession
time T2* being of order minutes which is achieved for spherical sample cells in
the regime of motional narrowing where the disturbing influence of field
inhomogeneities is strongly suppressed. The 3He gas is spin polarized in-situ
using a new, non-standard variant of the metastability exchange optical
pumping. We show that miniaturization helps to increase T2* further and that
the measurement sensitivity is not significantly affected by temporal field
fluctuations of order 10^-4.Comment: 27 pages, 7 figure
En-route to the fission-fusion reaction mechanism: a status update on laser-driven heavy ion acceleration
The fission-fusion reaction mechanism was proposed in order to generate
extremely neutron-rich nuclei close to the waiting point N = 126 of the rapid
neutron capture nucleosynthesis process (r-process). The production of such
isotopes and the measurement of their nuclear properties would fundamentally
help to increase the understanding of the nucleosynthesis of the heaviest
elements in the universe. Major prerequisite for the realization of this new
reaction scheme is the development of laser-based acceleration of ultra-dense
heavy ion bunches in the mass range of A = 200 and above. In this paper, we
review the status of laser-driven heavy ion acceleration in the light of the
fission-fusion reaction mechanism. We present results from our latest
experiment on heavy ion acceleration, including a new milestone with
laser-accelerated heavy ion energies exceeding 5 MeV/u
Measuring Information Transfer
An information theoretic measure is derived that quantifies the statistical
coherence between systems evolving in time. The standard time delayed mutual
information fails to distinguish information that is actually exchanged from
shared information due to common history and input signals. In our new
approach, these influences are excluded by appropriate conditioning of
transition probabilities. The resulting transfer entropy is able to distinguish
driving and responding elements and to detect asymmetry in the coupling of
subsystems.Comment: 4 pages, 4 Figures, Revte
- …